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Periodic introductions of influenza A viruses (IAVs) from wild birds contribute to 

emergence of novel strains that infect domestic poultry, lower mammals, and humans, 

but the mechanisms of emergence are unclear. The objectives of this dissertation research 

are to infer the genesis of two emerging IAVs, low pathogenic avian influenza (LPAI) 

H10N8 and highly pathogenic avian influenza (HPAI) H7N8 viruses, and to characterize 

the antigenic diversity and genetic evolution of contemporary H7 avian influenza viruses 

(AIVs) from North America.  

First, AIVs that are genetically close to the human H10N8 isolate were recovered 

at the live poultry market (LPM) visited by the first H10N8 patient. High seroprevalence 

of H10 virus was observed in ducks and chickens from five LPMs in the region. These 

findings suggested that LPM was the most probable source of human infection with the 

H10N8 virus, and this virus appeared to be present throughout the LPM system in the 

city.  

Second, the novel H7N8 virus most likely circulated among diving ducks in the 

Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana 
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turkey, in which it evolved from LPAI into HPAI. H4N8 IAVs from diving ducks possess 

a gene constellation comprising five H7N8–like gene segments. These findings suggest 

that viral gene constellations circulating among diving ducks could contribute towards 

the emergence of IAVs that can affect poultry. Diving ducks may serve as a unique 

reservoir, contributing to the maintenance, diversification, and transmission of IAVs in 

wild birds. 

Third, antigenic and genetic characterization of 93 H7 AIVs from North America 

showed limited antigenic diversity. Gradual accumulation of nucleotide and amino acid 

substitutions in the H7 gene of AIVs from wild and domestic birds caused a wide genetic 

diversity. These findings suggested that continuous genetic evolution has not led to 

significant antigenic diversity for contemporary H7 AIVs isolated from wild and 

domestic birds in North America. 

In summary, these findings not only improve our understanding of the ecology 

and evolution of IAVs but also provide information for formulation of effective disease 

prevention and control strategies. 
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INTRODUCTION 

The Biology of Influenza A Virus 

Emerging infectious diseases can be defined as “infections that have newly 

appeared in a population or have existed previously but are rapidly increasing in 

incidence or geographic range” (1). Among many infectious agents, few have as 

profound effect on humans as influenza viruses (2). 

Influenza viruses belong to the Orthomyxoviridae family and are enveloped, 

single-stranded, negative sense RNA viruses containing seven to eight gene segments (3, 

4). Influenza viruses are categorized into four distinct serotypes, A, B, C, and D on the 

basis of antigenic difference in the nucleoprotein (NP) and matrix (M1) protein (5). 

Among them, serotype A is the most important one due to its wide host range (4). 

Serotype B, C, and D are reported to infect only mammals (6-8). 

The genome of influenza A virus (IAV) comprises eight RNA gene segments 

(segment one to eight) with varying lengths of 890–2,341 nucleotides. These gene 

segments encode at least 11 proteins: polymerase basic 2 (PB2), polymerase basic 1 

(PB1) and polymerase basic 1 - Frame 2 (PB1-F2), polymerase acidic (PA), 

hemagglutinin (HA), NP, neuraminidase (NA), matrix (M) 1 and 2, and nonstructural 

(NS) 1 and 2 proteins are encoded by gene segments one to eight, respectively. IAV 

contains a host cell-derived lipid membrane, which is embedded with three virus proteins, 
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HA, NA, and M2. An inner coat comprised of the M1 protein is found underlying the 

membrane. Nucleocapsid of the viral genome lies at the center of the virus. Each of eight 

gene segments is encapsidated by multiple NP proteins to form a nucleocapsid, while 

three polymerase proteins (PB2, PB1, and PA) sit at the end of the nucleocapsid (4, 9, 

10). IAVs could be further divided into distinct subtypes on the basis of the antigenicity 

of two surface glycoproteins, HA and NA. To date, 18 HA and 11 NA subtypes have 

been reported (11). 

Impacts of Influenza Disease Caused by IAVs 

IAVs present a typical one-health challenge, where human health and animal 

health meet and influence each other (4). IAVs infecting humans could cause both global 

pandemic and seasonal epidemic. The occasional influenza pandemic could infect 20% to 

40% of the world population and cause a significant number of deaths (12). For example, 

the 1918 influenza pandemic was considered one of the most devastating infectious 

diseases in human history and it was estimated to have claimed at least 50 million human 

lives around the world (13, 14). In addition to sporadic pandemic outbreaks, the seasonal 

epidemic causes a number of morbidity and mortality in humans worldwide annually, 

including an average of more than 200,000 hospitalizations and 23,000 deaths in the 

United States alone (15, 16). The direct medical cost associated with seasonal influenza 

in the United States averages over ten billion US dollars annually (17). 

The diseases caused by IAV infection among domestic poultry include 

asymptomatic infections, mild to severe respiratory disease, and severe disease with high 

morbidity and mortality. On the basis of virulence in chicken, avian influenza viruses 

(AIVs) could be divided into two groups: highly pathogenic avian influenza (HPAI) and 
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low pathogenic avian influenza (LPAI). HPAI could cause devastating disease among 

domestic poultry and the mortality may be as high as 100%. HPAI viruses are associated 

with direct and indirect losses that may be incurred by the poultry industry through 

mortality of affected birds, culling of flocks to prevent spread, trade restrictions imposed 

of detection, and increased costs associated with outbreak response. For example, 17 

HPAI outbreaks were reported among domestic poultry worldwide during 1955-2000, 

including six outbreaks among domestic turkey and 11 outbreaks among domestic 

chicken (18). Among them, seven outbreaks caused more than 100,000 birds affection or 

depopulation. In 2003, 255 poultry flocks in the Netherlands was affected by HPAI 

H7N7 virus and it has led to the death or culling of more than 30 million birds (19). The 

HPAI outbreak among domestic poultry caused by H5 AIVs in the northwestern and mid-

western United States in 2015 led to depopulation of more than 48 million birds 

(https://www.aphis.usda.gov/publications/animal_health/2015/fs-hpai-vaccine-use.pdf). 

AIV, such as the HPAI H5N1 virus, could also transmit from birds to humans and 

cause fatal disease. In spring of 1996, the precursor of currently circulating HPAI H5N1 

viruses was identified in farmed geese in Guangdong, China; the mortality caused by the 

virus among geese was about 40%. Outbreaks among chicken were detected in Hong 

Kong one year later and led to depopulation of about 1.5 million birds. The first case of 

human infection with the H5N1 virus was reported in May 1997; H5N1 virus strain was 

isolated from a boy died of respiratory illness in Hong Kong (20). 17 additional cases of 

human infection with H5N1 viruses were reported in Hong Kong in November and 

December of the same year and five cases were fatal. In March 1999, H5N1 viruses were 

isolated from environmental samples collected from cages that housed geese in Hong 
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Kong (21). In 2003, fatal human infections with H5N1 virus were reported for the first 

time after the outbreak in Hong Kong in 1997 (22). Since December 2003, HPAI H5N1 

virus has caused outbreaks among domestic poultry and repeated zoonotic transmissions 

in Asia (23-26). In May 2005, HPAI H5N1 virus were detected among migratory birds at 

Qinghai Lake, China (27) and were subsequently found to spread to Europe, the Middle 

East, and Africa (28, 29). To date, the HPAI H5N1 virus has cause more than 800 

laboratory-confirmed human cases worldwide, including over 400 deaths 

(http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archive

s/en/).  

Ecology of IAVs 

IAVs exist in a complex ecosystem that involves various hosts, including humans, 

swine, equine, canine, sea mammals, and numerous wild and domestic birds (4, 9, 30).   

Wild Birds 

The first isolation of IAV from wild bird was reported in 1961 (31). A HPAI 

strain, A/tern/South Africa/61(H5N3), was isolated from a common tern in South Africa; 

and this virus caused infection among 1,300 common terns (18, 31). LPAI strains have 

been isolated from wild waterfowl since the mid-1970s (30-32). World-wide, LPAI 

viruses have been recovered from at least 105 wild bird species representing 26 different 

taxonomic families (33). Most of the 26 families are in the Order Anseriformes, followed 

by the Order Charadriiformes; birds in these two orders include ducks, geese, and swans, 

and shorebirds, gulls, and terns, respectively, which are considered major natural 

http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/
http://www.who.int/influenza/human_animal_interface/H5N1_cumulative_table_archives/en/
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reservoirs for IAVs (4, 33, 34). IAVs representing 16 HA and 9 NA subtypes have been 

identified in wild birds throughout the world (33). 

In North America, the southern migration of birds begins as early as August for 

some species, and in later September, October, and early November for most species. The 

highest prevalence of IAVs is found in dabbling ducks, particular mallards, which have 

been the most extensively studied bird species in the ecosystem of IAVs (33). The 

prevalence of IAVs in mallards fluctuates during the bird migration cycle. Influenza 

prevalence could reach as high as 60% among the mallards sampled in the breeding areas 

in Canada prior to the migration in early fall (35). Influenza prevalence falls to less than 

2% by the time when mallards reach the wintering ground in lower Mississippi and 

Louisiana usually around December and January of the following year. Influenza virus 

were brought back by mallards to the breeding areas in Canada in spring, although the 

prevalence may fall to as low as 0.25% (4).  

The infectious pattern of IAVs in shorebirds and gulls is different from that in 

waterfowl in the following two major aspects. First, the highest prevalence of IAVs in 

shorebirds and gulls is usually found in the later spring and early summer (4, 36). 

Shorebirds and gulls are proposed to bring the virus back to the northern breeding area 

(36). Thus, shorebirds and gulls may contribute to the overwinter maintenance and long-

term persistence of IAVs in wild birds. Second, in addition to H1 to H12, IAVs of the 

subtype H13 and H16 were primarily isolated from shorebirds and gulls (33, 37, 38). 

Substantial difference was observed between the genomic sequences of the H13 and H16 

gene segments and those of other subtypes, suggest the long time isolation of IAVs of 

these two HA subtypes in shorebirds and gulls (37). 
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The infection caused by most IAV strains in wild birds is asymptomatic, which 

may due to the long-term adaptation of IAVs in these birds (4). In wild birds, IAVs 

replicate mainly in the intestinal tract and are excreted in high level in the feces (39, 40). 

For example, a study in 1978 showed that the load of influenza virus in the feces of 

mallards could be up to 108.7 50% egg infectious doses per gram (40). In addition, 

influenza virus could remain infectious for over 30 days in water at 0 degree Celsius (oC) 

and four days at 22 oC (40, 41). Wild waterfowl shed virus into the water through feces 

and fecal-oral route is considered the major way for the transmission of IAVs between 

waterfowls (4, 9). 

The genetic pool of IAVs is divided into two major independently evolving 

lineages, Eurasian and American, probably due to geographical separation of host species 

(42-44). The migration of birds between different continents allows the occasional gene 

flow between these two genetic pools (45). For example, Beringian Crucible is 

recognized as a common breeding grounds shared by migratory birds from Eurasia and 

America. Early research showed that around 1.5 to 2.9 million birds migrate from Asia to 

Alaska annually (46). A 2008 study characterized 38 IAVs isolated from Alaska and 

found that nearly half (44.7%) possess at least one gene segment more closely related to 

those recovered from Eurasia instead of those from North America (47). Evidence for 

intercontinental gene flow was also observed in another study of 25 IAVs isolated from 

North America, among them, five isolates have two Eurasian origin gene segments and 

20 isolates have one Eurasian origin gene segment (48). In addition, there were evidences 

showing that Eurasian origin H6 IAVs invaded the North American wild bird population 

and caused outbreaks among domestic poultry in California during 2000-2002 (49, 50). 



www.manaraa.com

 

7 

Domestic Poultry 

Through migration, wild birds can carry IAVs from one area to another and 

present risks to the host species along the migratory flyway, including domestic poultry, 

lower mammals, and humans. Frequent introductions of wild bird-origin IAVs to 

domestic poultry have been well-documented. In Minnesota alone during 1978-2000, 

there were at least 108 laboratory-confirmed introductions of influenza viruses from wild 

birds to domestic poultry (51). The direct transmission of IAVs from migratory birds to 

range-reared turkey was recognized as a major source of IAV outbreaks among domestic 

turkey in the United States; and this dynamic was also suggested to contribute to the IAV 

outbreaks among chickens (52). Alternatively, range-reared domestic ducks and geese 

could serve as intermediate hosts that bridge the ecological gap between wild birds and 

domestic chickens and turkeys.  

Following introduction to domestic poultry, IAVs could cause disease and 

circulate in domestic poultry for a long time (30, 53); and AIVs of two HA subtypes, H5 

and H7, are known to could give rise to HPAI virus. HPAI virus was historically known 

as fowl plague, which was reported for the first time among chickens in Italy in 1878 (18, 

54). The virus was later isolated in 1902, A/Chicken/Brescia/1902(H7N7). Fowl plague 

was classified as IAV in 1955 and referred to HPAI ever since (18). The major difference 

in the pathogenicity of HPAI and LPAI viruses is their ability to cause systemic 

replication in the host. The cleavability of the HA protein is one of the major 

determinants of the tissue tropism of AIVs (55). The HA protein of HPAI virus can be 

cleaved by a broad range of enzymes that present in most cells of the body and caused 

systemic infection. In contrast, the HA protein of LPAI virus can only be cleaved by 
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trypsin-like proteases and infection is restricted in the respiratory or intestinal tract (56). 

The presence of multiple basic amino acids in the cleavage region of the HA protein is 

the major molecular feature for HPAI strains. 

Seventeen HPAI outbreaks were reported among domestic poultry worldwide 

during 1955-2000 (18). HPAI outbreaks among domestic poultry were also reported in 

multiple countries after the year 2000. For example, during 2003-2008, HPAI H5N1 

virus was reported in at least ten countries in East and Southeast Asia, including China, 

Japan, South Korea, Cambodia, Indonesia, Laos, Malaysia, Myanmar, Thailand, and 

Vietnam (57). Outside of the region, HPAI H5N1 virus were reported in multiple 

countries in Middle East, Europe, and Africa, including Israel, Iraq, Russia, United 

Kingdom, Germany, France, Egypt, and Nigeria (58, 59). Detection of HPAI H7 viruses 

were reported in Chile (H7N3, 2002) (60), the Netherlands (H7N7, 2003) (19), Canada 

(H7N3, 2004 and 2007) (61, 62), and Mexico (H7N3, 2012) (63, 64).  

In January 2014, a novel Eurasian lineage clade 2.3.4.4 HPAI H5N8 virus was 

detected in wild bird and domestic poultry in South Korea (65), and was subsequently 

detected in China and Japan (66). Since November 2014, the novel HPAI H5N8 virus has 

been detected in wild bird and domestic poultry in multiple countries in Europe, 

including Germany, the Netherlands, the United Kingdom, and Italy, 

(http://www.oie.int/en/animal-health-in-the-world/update-on-avian-influenza/2014/). In 

December 2014, HPAI H5N8 virus was first detected in wild bird in the United States 

(67). Two novel reassortant viruses of the subtype H5N1 and H5N2 have been isolated 

from wild bird and domestic poultry in the United States and Canada since December 

2014 (68-71). The HPAI H5 outbreaks caused depopulation of approximately 7.5 million 
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turkeys and 42.1 million chickens in the United States 

(https://www.aphis.usda.gov/animal_health/emergency_management/downloads/hpai/lan

dfillsandhpairesponse.pdf). 

Swine 

The infection of influenza virus in swine was first clinically recognized in 1918 in 

the United States, which overlaps the time period of the 1918 influenza pandemic (72). 

The first swine influenza virus (SIV) was isolated in 1930 (73, 74); this virus, refers to 

the classical swine H1N1 virus, has continued to circulate and cause diseases in swine 

population worldwide. The classical swine H1N1 virus was found to be predominant in 

the North American swine population until the mid-1990s (75-77); however, this trend 

changed dramatically with the emergence and establishment of the triple reassortant SIVs 

of the subtypes H1N2 and H3N2 since 1998 (78-80). The eight gene segments of the 

triple reassortant SIVs were derived from multiple sources, including the classical swine 

H1N1, human H3N2, and avian origin IAVs (78, 79). In addition, introduction of AIVs to 

swine population has been frequently reported. For example, an avian like H1N1 IAVs 

emerged and led to enzootic disease in the European swine population since 1979 (81-

83). In China, serological surveillance results suggested the prevalence of avian origin 

H3, H4 and H6 IAVs in the swine population (84). Introduction of avian origin H1N1 

IAV to swine was reported in Hong Kong in 1993 (85). There were also reported 

sporadic cases of avian origin IAVs infection in swine, including H4N1 (86), H4N8 (87), 

H5N1 (88), H6N6 (89, 90), H9N2 (91), and H10N5 viruses (92). 

Swine are suggested to play an important role in the ecology of IAVs. The cell of 

swine respiratory tract possesses receptors recognized by both avian (sialic acid α2,3 
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galactose, SA2,3Gal) and human (SA2,6Gal) IAVs (93), and this provides the biological 

basis for the susceptibility of swine to both avian and human IAVs. Thus, swine is 

proposed to function as the intermediate hosts, or mixing vessels, for the generation of 

pandemic strains, including both the 1957 and 1968 pandemic virus (94). The emergence 

of the 2009 pandemic virus provided further evidence supporting this hypothesis (95); 

and this virus will be described in the next section. 

Humans 

The introduction of avian origin influenza gene(s) to influenza viruses that 

circulating in humans has been associated with the emergence of four documented 

pandemic strains, including 1918 H1N1, 1957 H2N2, 1968 H3N2, and 2009 H1N1 

viruses (95-98).  

The 1918 influenza pandemic emerged and swept globally since September, 1918 

(13, 99). The origin of the 1918 H1N1 virus remained controversial and probably could 

never be resolved (12, 100). Although no virus was isolated prior or during the 1918 

influenza pandemic, genetic analysis of the reconstructed genome of 1918 H1N1 virus in 

the 1990s showed that the virus was probably an avian like influenza virus (101). There 

are still a few key questions not answered, including the origin host of the virus and the 

potential existence of an intermediate host (12, 13). In contrast to the HPAI viruses, 

multiple basic amino acids were not observed at the cleavage site of the HA protein of the 

1918 H1N1 virus (102, 103). 

The 1957 H2N2 and 1968 H3N2 pandemic strains were both originated from 

southeastern Asia. These two pandemic strains were reassortants generated through 

reassortment between pre-existing human IAVs and AIVs (96-98). The PB1, HA, and 
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NA gene segments of the 1957 H2N2 virus were derived from an AIV, and the remaining 

five gene segments were the descendant of the 1918 H1N1 strain (97). The 1968 H3N2 

virus possess two gene segments (PB1 and HA) originated from an AIV, and the 

remaining six gene segments were derived from the circulating human H2N2 virus (96). 

The first influenza pandemic in the 21th century occurred in 2009. A novel human 

H1N1 virus was first detected in Mexico in March 2009 (104, 105) and this virus quickly 

spread to the rest of the world. By July 2009, 162,300 laboratory-confirmed cases and 

over 1,100 human deaths caused by the 2009 H1N1 pandemic virus were reported in 168 

countries (106). The pandemic was estimated to have caused more than 123,000 deaths 

around the world by the end of 2009 (107). Subsequently, the 2009 H1N1 virus started to 

co-circulate with seasonal H3N2 and influenza B virus around the world (108-110). 

Phylogenetic analysis results showed that the 2009 H1N1 virus was a reassortant with the 

eight gene segments originated from multiple sources (95). The NA and MP gene 

segments were derived from the European avian like H1N1 SIV, and the remaining six 

gene segments were originated from the North American triple reassortant SIV; 

specifically, the HA, NP, and NS gene segments were derived from the classical swine 

H1N1 virus, PB1 gene segment was originated from seasonal H3N2 virus, and PB2 and 

PA gene segments were derived from AIVs (111, 112). Each precursor gene segment of 

the 2009 H1N1 virus had been circulated in the swine population for more than a decade 

and the direct precursor of the virus may had emerged a few months prior to the detection 

of the outbreak in humans (112, 113).  
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Evolution of IAVs 

IAVs are notorious for their capability of rapid evolution in response to the 

adapting hosts. The evolutionary dynamics of IAVs is largely determined by rapid 

mutation, frequent reassortment, and multiple selection pressures, including host immune 

response and host switch (4). 

Population and Quasispecies 

Infection of IAV could start with a small number of virions and then generated a 

large number of progeny viruses. An individually-infected cell could release more than 

104 influenza viruses, although this number is subjected to variation due to difference in 

host cells (114). This large number of influenza viruses exists as a quasispecies, similar to 

other RNA viruses (115). Quasispecies is defined as “a cloud of diverse variants that are 

genetically linked through mutation, interact cooperatively on a functional level, and 

collectively contribute to the characteristics of the population” (116). Selection pressure 

acts upon this whole unit rather than individual virus. In addition, the survival of a 

population is not only determined by its own fitness but also its flexibility to mutate and 

give rise to progenies that are more fit on average. 

Evolutionary Mechanisms 

There are three mechanisms that contribute to the evolution and genetic diversity 

of IAVs: mutation, reassortment, and recombination. 

Mutation refers to substitution, insertion, and deletion due to the intrinsic error of 

the replication. Viral RNA polymerase lacks the proofreading ability and leads to the 

error-prone replication of RNA viruses. The mutation rate of RNA viruses is 
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approximately 10-4 mutations per nucleotide copied (117), which is significantly higher 

than that of DNA viruses (10-9 mutations per nucleotide copied). Based on this mutation 

rate, approximately one mutation is made across the IAV genome during one replication 

cycle. Given the large population size, mutation contributes to the great genetic diversity 

of IAVs. 

The segmented nature of IAV genome allows exchange of individual gene 

segment or combination of gene segments between IAVs during mixed infection in the 

same host cell. Reassortment occurs frequently between IAVs and permits rapid 

generation of progeny viruses with gene segment combination significantly different 

from that of the parental viruses (48, 118, 119). Reassortment enhances the genetic 

diversity of IAV, in turn, this increased diversity may facilitate the generation of novel 

pandemic and epidemic strains. Reassortment has been associated with the emergence of 

at least three out of four documented pandemic strains as described earlier, including 

1957 H2N2, 1968 H3N2, and 2009 H1N1 viruses (95, 96). Moreover, genome-scale 

evolutionary study showed high degree of reassortment and periodic genome-wide 

sweeps for the H3N2 seasonal influenza virus (120, 121). 

Recombination refers to the exchange of pieces of genetic information between 

RNA molecules during replication and leads to the production of a RNA molecule with 

mixed ancestry. Recombination that occurs between regions with high sequence identity 

is referred as homologous, while recombination between two genetically different regions 

or non-related RNA molecules is referred as non-homologous. Early study with genomic 

dataset of human IAV showed that homologous recombination, if occurring at all, is very 

rare (122). On the other hand, non-homologous recombination has been reported and 
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associated with increased pathogenicity of a few AIV strains. The HA gene segment of 

the HPAI H7N3 viruses isolated during the outbreak in Chile (2002) and Canada (2004) 

obtained multi-basic amino acids at the cleavage region through non-homologous 

recombination with NP (60) and MP (123) gene segment, respectively. In addition, HPAI 

H7N3 virus isolated during the outbreak in Mexico (2012) obtained insert at the HA 

cleavage region through non-homologous recombination with host genomes (63). 

Selection Pressure 

Mutation, reassortment, and recombination lead to great genetic diversity of 

IAVs. This increased genetic diversity provides a platform for selection pressure to select 

for or against. 

Immune Pressure 

Although multiple selection pressures were suggested to determine the long-term 

success of any lineage of IAV, host immune pressure is considered to play a critical role. 

IAVs could escape the host immune response through its antigenic evolution known as 

antigenic drift and antigenic shift. Two surface glycoproteins, HA and NA, are the 

primary targets of the humoral immune response. Accumulation of point mutations 

within antibody-binding sites in HA and/or NA proteins can lead to a small antigenic 

change, so called antigenic drift. The switch of HA and/or NA gene segment by 

reassortment can cause a large antigenic change, so called antigenic shift. 

In wild birds, IAVs are proposed to have reached evolutionary stasis and 

maintained a stable antigenic status (4). For example, a study in 1987 showed that H3 

AIVs isolated from mallards within the Pacific flyway during 1977-1985 are highly 
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conserved in antigenic properties (124). Similar to that, a limited antigenic diversity was 

found among 37 H3 AIV strains isolated from migratory birds from Atlantic, Central, 

Mississippi, and Pacific flyways during 2007-2011 (125). Another study found that 

antigenic difference among 26 H7 AIVs isolated from shorebirds and gulls at Delaware 

Bay was within 2-fold change in the hemagglutination inhibition (HI) assays; among the 

26 isolates, 24 are of the subtype H7N3, one of subtype H7N4 and one of subtype H7N5 

(38). The same study also observed that four mallard-origin H5 AIVs isolated from 

Sweden and the Netherlands in 1999 and 2002 showed antigenic differences of less than 

4-fold change in HI assays.  

Probably due to the selection pressure from host immune response and/or host 

adaptation, the HA protein of IAVs were found to evolve faster in a few species, inducing 

humans (126), swine (127), and domestic poultry (128, 129). In humans, there are two 

subtypes of seasonal IAVs, H1N1 and H3N2 viruses. Seasonal H3N2 IAV originated 

from the 1968 pandemic strain and has continued to circulate ever since. Seasonal H3N2 

IAV has undergone considerable antigenic evolution and 11 distinct antigenic clusters 

were observed during 1968-2003 (130). Antigenic drift between different clusters could 

be caused by single and multiple amino acid substitutions in the HA protein; and 39 

antigenicity associated sites were identified (131). The history of seasonal H1N1 IAV 

could date back to the 1918 pandemic and it had circulated among humans until replaced 

by H2N2 virus in 1957 (96, 132, 133). During the post-pandemic period, a major 

antigenic change was reported in 1947 (134). After 20 years of being undetected, H1N1 

virus which is identical to that from the 1950s re-emerged in 1977 (135, 136) and has 

been co-circulating with H3N2 virus ever since. Compared to the rapid evolution 
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demonstrated by seasonal H3N2 IAV, H1N1 virus showed less frequent antigenic drifts 

(137). In addition to mutations at the antibody binding sites, the change in antigenicity of 

H1N1 virus was associated with glycosylation in the globular head of the HA protein 

(138). 

Antigenic drift has also been reported for IAVs that infect swine. For example, 

antigenic variants of classical H1N1 SIVs were reported in the United States during 

1992-1994 (139-141). H1N1 SIVs isolated from the North American swine population 

were divided into multiple antigenic clusters, inducing α, β, γ, δ-1, and δ-2 (142). Similar 

to that, at least two distinct antigenic clusters, H3N2 SIV-alpha and H3N2 SIV-beta, were 

identified in the H3N2 SIVs that circulate among the swine population in the United 

States during 2006-2012 (143). In Europe, antigenic drift was reported for the H3N2 

SIVs from multiple countries in the 1990s, including the Netherlands and Belgium (144), 

and Italy (145). 

Host Switch 

IAVs present partial restriction in terms of host range with occurrences of 

interspecies transmission. HA glycoprotein is considered the major determinant for host 

range due to its role in recognition of and binding to the host cell receptor (9). HAs of 

human IAVs prefer to bind to SA2,6Gal, whereas those of AIVs preferentially bind to 

SA2,3Gal. Amino acid mutations in the receptor binding site could confer the change in 

receptor binding specificity, and specific mutations vary among the HAs of different 

viruses. For example, amino acid mutations Q226L and G228S (H3 numbering) are 

linked with increased binding affinity to SA2,6Gal for human H2 and H3 IAVs (146, 

147). Amino acid mutations E190D and G225D (H3 numbering) are crucial for increased 
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binding affinity to SA2,6Gal for H1 IAVs infecting humans and swine (148). In addition 

to the HA gene segment, molecular features associated with host switch were identified 

in other gene segments. For example, approximately 20 amino acids deletion in the stalk 

region of NA protein is considered one characteristic feature in the host switch of AIVs 

from waterfowl to domestic poultry (149, 150); and this molecular feature could be a 

compensatory change to maintain the functional compatibility between HA and NA 

proteins (151). Molecular changes in the genes that code polymerase proteins, including 

E627K and D701N substitutions in PB2 gene segment, could be associated with 

increased replication ability in the cells of new hosts (152-155). 

Vaccination 

Vaccination is considered one of the primary options to prevent and control 

influenza outbreaks among humans. The World Health Organization (WHO) Influenza 

Program was established to address the threat brought to public health by influenza since 

1948 (156, 157). Vaccine against influenza A and B viruses were invented in the 1940s 

(158). The trivalent inactivated vaccine was developed after the 1968 influenza pandemic 

(159). Currently, the Global Influenza Surveillance and Response System comprises 

more than 100 national influenza centers and six collaborating centers around the world 

(160). A large number of influenza samples were collected and analyzed through this 

network on a yearly basis. Recommendation of the viral seed strain in the vaccine for the 

upcoming influenza season was made on the basis of antigenic, genetic, and 

epidemiological data. The vaccine seed strain is determined to be updated when there is 

significant antigenic difference between the existing vaccine strain and the emerging 

strain; and the emerging strain may cause human infections in a wide geographic region. 
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The WHO consultation is head twice a year, every February for the upcoming Northern 

hemisphere influenza season and every September for the upcoming Southern 

hemisphere influenza season, respectively. The trivalent vaccines are recommended to 

contain two influenza A strains and one influenza B strain; and the quadrivalent vaccines 

are recommended to include an additional influenza B strain. 

Although the existing WHO influenza surveillance program is considered one of 

the best-developed systems for infectious disease, it still has several shortcomings. First, 

the selection of vaccine seed strain is based on the prediction of the predominant viral 

strain for the upcoming influenza season; however, a new antigenic variant could emerge 

and quickly spread after recommendation of the vaccine seed strain is made. Second, 

ferret sera were used for antigenic characterization in the existing system, and this may 

have limitation in accurately predicting vaccination-induced responses in humans (161-

163). This was shown by the poor performance of the 2014-2015 Northern Hemisphere 

influenza vaccines attributed to a mismatch of H3N2 vaccine component with epidemic 

strains in circulation (161). Third, the existing system mainly consider the two surface 

glycoproteins, HA and NA; however, genome wide interaction may contribute to the 

evolutionary dynamics of seasonal influenza virus (120). Fourth, antigenic 

characterization through current laboratory methods is relatively time-consuming, hence, 

only a relatively small number of influenza samples can be antigenically characterized. 

The conventional strategy for controlling the spread of avian influenza outbreaks 

among domestic poultry involves enforcement of biosecurity measures, diagnostics and 

surveillance, and culling of infected birds. Culling of infected birds is one of the 

conventional approaches to control the HPAI outbreaks. The strategies for control of 
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LPAI outbreaks vary from no action to active eradication programs including culling of 

infected birds. In addition to these conventional methods, vaccination programs have 

been implemented in multiple countries to control AIV outbreaks among domestic 

poultry. In North America, vaccine program against AIV was introduced in 1995 to 

control the HPAI H5N2 virus in Mexico (164); vaccine was used against a 2003 H7N2 

AIV outbreak in Connecticut, the United States, and against the on-going H7N3 AIV 

outbreak in Mexico. In Eurasia, vaccine has been used in Pakistan since 1995 to control 

H7N3 virus; vaccine was used against H7N1 virus in 2000 and against H7N3 virus in 

2002 in Italy. Vaccination program against LPAI H9N2 virus has been implemented in 

China since 1998. Vaccination program against HPAI H5N1 virus was initially 

implemented in Hong Kong Special Administrative Region, China in 2012. Afterwards, 

more than 113 billion doses of vaccine have been used against HPAI H5N1 virus in 14 

countries during 2002-2010. Nationwide vaccination programs were carried out in China, 

Vietnam, Indonesia, and Egypt, all of which account for 99% of the vaccine used against 

HPAI H5N1 virus (165). The use of vaccine can reduce or prevent clinical disease; 

reduce or eliminate virus shedding into the environment from infected birds, which 

would help prevent the spread of virus to uninfected flocks; and increase the resistance of 

birds to becoming infected. Early experience showed that vaccination program could 

serve as a valuable component in a successful AIV control strategy. 

The implementation of vaccination program has been associated with the 

antigenic evolution of AIVs circulating among domestic poultry. For instance, 

vaccination program was suggested to facilitate the genetic evolution of HPAI H5 viruses 

circulating among domestic poultry; a 2011 study showed that HA gene of HPAI H5N1 
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virus isolated from countries where vaccination was implemented genetically evolved 

faster than those from countries where vaccination was not implemented (166). In 

addition, vaccination program has been associated with the antigenic evolution of HPAI 

H5N2 virus in Mexico. Vaccination program was introduced to control the HPAI H5N2 

outbreak among domestic chicken in 1995 (167). After that, two novel genetic lineages 

emerged; viruses in these two lineages underwent antigenic drift and acquired a more 

than 4-fold antigenic difference from the vaccine strain (168). Moreover, antigenic 

characterization of 41 H7N3 AIV strains isolated during the 2002-2004 epidemic in Italy 

showed significant antigenic difference between the viruses isolated prior to the 

implementation of vaccination program and those after the vaccination program (169). 

Knowledge Gaps and Objectives of this Dissertation 

Collectively, periodic introductions of IAVs from wild birds contribute to the 

emergence of novel strains that cause infections in humans, lower mammals, and 

domestic poultry. Vaccination is considered one of the primary options to prevent and 

control human influenza outbreaks; and vaccination program could also contribute to a 

successful AIV control strategy. Antigenic match between vaccine seed strain and 

circulating viral strains is one of the keys to a successful influenza vaccination program. 

Thus, it is critical to characterize the genesis of emerging avian origin IAVs and 

understand the antigenic diversity of contemporary IAVs. Such analyses could provide 

important information for formulation of effective disease control and prevention 

strategies. Although our understanding has been greatly improved, there are a few 

questions not addressed regarding the antigenic and genetic evolution of emerging avian 

origin IAVs. 
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First, a novel LPAI H10N8 virus emerged and caused three human infections in 

Jiangxi, China since December 2013 (170). Genetic analysis showed that the novel virus 

was a reassortant with HA and NA gene segments originating from wild bird origin IAVs 

and the six internal gene segments from the H9N2 virus circulating among domestic 

poultry in the region. However, the source of human infection with the H10N8 virus was 

not determined. 

Southern China is hypothesized to be an influenza epicenter (171), and the 

emergence and zoonotic transmission of novel AIVs were favored by a unique set of 

ecological conditions, including the large domestic duck population and the widespread 

live poultry market (LPM) system (172-175). The threat brought by the ecosystem in the 

region was repeatedly demonstrated by the emergence and zoonotic transmission of 

H5N1, H9N2, and H7N9 viruses (20, 176, 177). 

LPMs have been recognized as playing an important role in the epidemiology of 

IAVs (173, 178, 179). LPMs host various avian species from different sources in a dense 

environment and serve as an optimal site for maintenance and diversification of influenza 

virus. For example, LPAI H5N2 viruses had been isolated from LPMs in the United 

States during 1986–1989 (178, 180). LPAI H7N2 virus was first identified in the LPMs 

in the Northeast United States in 1994, and it has been continued to circulate until 2006 

(129, 181). Evidence for reassortment of H7N2 AIVs with other AIVs circulating in the 

LPMs was observed. In addition, LPMs provide an environment for contact between 

humans and infected live animals, which allows the potential zoonotic transmission of 

AIVs. The association between LPMs and zoonotic transmission was suggested by the 

earlier human infections of HPAI H5N1 and LPAI H9N2 viruses (182-184). In March 
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2013, a novel LPAI H7N9 virus emerged in eastern China (177) and has become enzootic 

in the region. Since the emergence of H7N9 virus, more than 500 laboratory-confirmed 

cases in human have been reported, of which more than 100 were fatal 

(http://www.who.int/influenza/human_animal_interface/influenza_h7n9/en/). LPM was 

identified as the most probable source of human infections with H7N9 virus (177, 185). 

This was further supported by the evidence showing temporally closure of LPMs in 

major Chinese cities after the initial outbreak of H7N9 virus significantly reduced the 

number of human infections (186, 187). We hypothesized that LPM is the source of 

H10N8 human infections. 

Second, the emergence of HPAI viruses in domestic poultry has been associated 

with introductions of LPAI viruses from wild birds, but the mechanisms of emergence are 

unclear. In January 2016, a novel HPAI H7N8 virus emerged and caused high mortality 

among turkey flock in Indiana, United States. The genesis of this H7N8 virus is not 

understood. 

Following introductions into domestic poultry, LPAI H5 and H7 viruses have the 

potential to evolve into HPAI viruses through two mechanisms: 1) acquisition of basic 

amino acids in the cleavage region of the HA protein by insertion or substitution (188), 

and 2) recombination with another gene segment(s) or host genome (60, 63, 123). HPAI 

viruses are of concern because of the direct and indirect losses that may be incurred by 

the poultry industry through mortality of affected birds, culling of flocks to prevent 

spread, trade restrictions, and increased costs associated with outbreak response. 

The consequences of introductions of IAVs from wild birds to domestic poultry 

has been repeatedly demonstrated by the emergence of novel HPAIs in Eurasia, including 

http://www.who.int/influenza/human_animal_interface/influenza_h7n9/en/
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H5N1 (20), H7N1 (189), and H7N7 viruses (19). In the Americas, HPAI H5 viruses 

caused outbreaks among domestic poultry in 1983 (190), 1994 (191), and 2014 and 2015 

(71). In addition to subtype H5 viruses, HPAI H7 viruses have been frequently reported 

in the Americas. There were four reported HPAI H7N3 outbreaks between 2002 and 

present: one outbreak in Chile (2002) (60), two distinct outbreaks in Canada (2004 and 

2007) (61, 62), and one outbreak in Mexico (2012). In addition to affect domestic 

poultry, HPAIs H5N1, H7N3 (Canada in 2004 and Mexico in 2012), and H7N7 viruses 

also caused human infections (20, 64, 192, 193). 

Retrospective studies have often been conducted to determine the putative 

precursor viruses leading to the emergence of IAV strains that cause outbreak among 

domestic poultry. Wild birds have been recognized as the most probable source for 

outbreak strains or at least a few of the gene segments that were incorporated into the 

genome of the outbreak strains (194, 195). However, in many instances, evidence is 

lacking regarding the time of emergence, location of reassortment, and bird species 

associated with the genesis of a particular IAV outbreak strain; limited availability of 

contemporary wild bird-origin IAV isolates or sequences impedes any attempt to 

investigate the potential mechanisms underlying the emergence. 

We hypothesized that 1) the H7N8 virus identified in turkeys in Indiana was 

initially introduced from wild birds and developed high pathogenicity within poultry 

production systems; 2) genetic analysis of a large number of available contemporary wild 

bird–origin IAV isolates would indicate what wild bird species and IAVs contributed to 

the emergence of the HPAI H7N8 virus. 
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Third, earlier studies showed minor antigenic diversity for H7 AIVs isolated from 

wild birds in Eurasia (195, 196); however, limited data is available for antigenic diversity 

of contemporary H7 AIVs from North America. H7 AIVs present a continuous threat to 

both public and animal health. Vaccination program is considered a useful component of 

a successful control strategy against AIV and has been implemented in multiple 

countries. Because IAVs frequently undergo antigenic change, circulating influenza 

strains should be continually monitored to optimize the antigenic matches between 

vaccine seed strain and circulating strains. Thus, understating the antigenic diversity of 

contemporary H7 AIVs is crucial for a successful vaccination program.  

The objectives of this dissertation research were to infer the genesis of two 

emerging avian origin IAVs, LPAI H10N8 and HPAI H7N8 viruses, and to investigate 

the antigenic diversity and genetic evolution of H7 AIVs from North America. The 

overall hypotheses of this dissertation were: 1) genetically, a persistent gene constellation 

of IAVs circulating among wild birds favors the emergence of novel IAVs that cause 

outbreaks among domestic poultry and human; 2) antigenically, IAVs have reached a 

point of stasis in wild birds but not in domestic poultry. To validate the hypotheses, four 

specific objectives were proposed. 

First, develop and validate a web-based pipeline for analyzing and assembling 

next generation sequencing (NGS) data for influenza viruses. 

Second, characterize the genesis of a novel LPAI H10N8 virus and identify the 

source of H10N8 human infection in China.   
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Third, characterize the genesis of a novel HPAI H7N8 virus and recover the 

evolutionary pathway leading to the outbreak of disease among domestic turkey in 

Indiana, the United States. 

Last, characterize the antigenic diversity and genetic evolution of contemporary 

H7 AIVs isolated from North American wild and domestic birds during 1971-2012.  

Dissertation Organization 

This dissertation is organized into six chapters. Chapter I introduces the 

background of IAVs and states the hypotheses, and objectives of this dissertation 

research. A web-based pipeline for analyzing and assembling NGS data for influenza 

viruses is presented in Chapter II. Chapter III investigates the genesis of a novel LPAI 

H10N8 virus that emerged and caused three human infections in China, 2013. Study in 

chapter IV investigates the potential origins, evolutionary pathways, and introduction 

routes of a novel HPAI H7N8 virus that caused disease outbreak among turkey flocks in 

Indiana, the United States, 2016. Chapter V describes the antigenic diversity and genetic 

evolution of contemporary H7 AIVs from North America. Conclusions of this 

dissertation study are provided in chapter VI. 
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A WEB-BASED PIPELINE FOR  

ANALYZING AND ASSEMBLING NGS DATA OF IAVS 

NGS has become a routine method in influenza virus research. To date, there is a 

lack of publically available pipelines for analyzing and assembling NGS data of influenza 

virus. There are two major challenges for development of such a pipeline: rapid 

identification of eight optimal reference sequences from a large influenza database 

corresponding to eight gene segments in the influenza genome; determination of the 

origin of short reads and assembly of homologous genomic sequences in mixed infection 

sample. In this chapter, a web-based pipeline for analyzing and assembling NGS data of 

influenza viruses is developed and validated. This pipeline could be applied to evaluate 

the quality of NGS data, to identify the eight suitable reference sequences for influenza 

genome, to assemble the full genome, and to evaluate whether there is a mixed infection 

of multiple IAVs in the sample. In addition, the web-based application provides a user-

friendly graphic interface and visualization for users. This pipeline is comparable in 

performance to the commercially available software represented by CLC Genomics 

Workbench but enabled the genomic analysis and assembly of influenza NGS data in a 

high throughput manner. 
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Introduction 

The availability of NGS technology has allowed us to rapidly sequence influenza 

genomes; and NGS has become a routine method in molecular diagnosis, surveillance, 

vaccine strain selection, and laboratory research for influenza viruses. The NGS data are 

characterized by high throughput of relative short reads. For example, the read length is 

usually less than 300 bp for NGS data generated by Illumina. The challenge in NGS data 

analyses is to accurately assemble these short reads into the IAV genomic sequences and 

still represent the polymorphisms of these sequences. 

To date, there still lacks of publically available pipelines for analyzing and 

assembling NGS data of influenza virus. Influenza virus genome is comprised of eight 

single strand negative-sense RNA gene segments, and thus genomic assembly will 

require eight closely matched reference sequences. Moreover, influenza virus assembly 

could be impeded by the mixed infection of multiple influenza viruses in the sample. 

Considering the relative conservation of influenza gene segments, especially six internal 

gene segments, it is not a trivial task to differentiate the origin of short reads and then 

assembly them into homologous genomic sequences. 

The objective of this chapter is to develop and validate a web-based pipeline for 

analyzing and assembling NGS data for influenza viruses. The pipeline is designed to 

aggregate a series of existing computational tools for NGS data preprocessing, template 

matching, and genomic assembly, enabling the assembly of influenza genome and the 

detection of mixed infection in a high throughput manner. The web-based application is 

expected to provide user-friendly interface and visualization for the users. 
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Materials and Methods 

Data Preprocessing 

The designed web-based pipeline comprises multiple steps, including quality 

control, trimming, reference search, genome assembly, and mix-infection detection 

(Figure 1). The pipeline starts with investigation of the overall quality of the raw NGS 

data with FastQC v0.10.1 (197). It generates composition statistics of the raw data, 

including read number, read length, and base quality. The reads in the raw data are 

trimmed with Trimmomatic v0.32 (198). In this step, nucleotide bases are removed from 

both ends of the read if their quality falls below a pre-defined threshold; and the read is 

clipped if the average quality within a sliding window falls below a threshold quality. 

After that, reads above a specified length are retained for further analyses. The quality of 

the trimmed reads is once again investigated with FastQC v0.10.1. 

Genome Assembly 

This pipeline enables two modes for sequence assembly: reference-based 

assembly and de novo assembly. The reference-based assembly refers to the case when a 

reference influenza genome is provided, and then trimmed reads could be directly 

mapped to the reference with the implementation of Bowtie v2.0 (199). Local alignment 

and pair-end mode are used for reads mapping. The de novo assembly mode is initiated 

when a reference genome is not available beforehand. In this case, trimmed reads are de 

novo assembled to create contiguous sequence with Velvet v1.2.10 (200). The resulting 

contigs are searched against the influenza nucleotide database by BLAST (201) and eight 

reference sequences corresponding to eight gene segments are selected. Subsequently, the 

influenza genome is assembled as described in the reference-based assembly mode. Each 
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nucleotide base in the consensus sequence is determined on the basis of two criteria: (1) it 

is supported by a specified mapping coverage, and (2) consensus is reached among reads 

cover this position. The subtype of a sample is determined on the basis of the reference 

sequences selected for the HA and NA gene segments. When de novo assembly generates 

multiple HA and/or NA gene segments corresponding to distinct subtypes, the sample is 

identified as a mixed infection sample. 

 

Figure 1 Pipeline for analyzing and assembling NGS data of influenza virus. 

 

Web-based Application 

To provide a user-friendly graphic interface and visualization tool, a web-based 

application was developed for this influenza genome assembly pipeline. Two assembly 

modes, reference-based assembly and de novo assembly, are provided to users as an 

option. In the reference-based mode (Figure 2), the user will provide NGS data and a 

table that comprises the GenBank accession numbers of the eight reference sequences for 
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each sample. Reference sequences will then be obtained from influenza nucleotide 

database by the given accession numbers. In addition, users will be asked to provide 

parameters for each step in the analysis. For example, threshold quality, sliding window 

size, and read threshold length are needed for quality trimming; threshold coverage and 

level of consensus are needed for determining the nucleotide base for each position in the 

consensus sequence. In the de novo assembly mode, users will provide k-mer length for 

de novo assembly.  
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Figure 2 Reference-based assembly mode submission interface. 

 

After the analysis, a number of statistics will be provided to users in form of 

graphics. These statistics include read number and average base quality in the raw NGS 

data and trimmed data, percentile of raw reads retained following quality trimming, 

percentile of read that were mapped to the reference genome, and coverage of the 

consensus sequences. Users could download these plots and various formats are 

supported. The resulting genomic sequence files are provided in both gene-specific and 
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sample-specific manners. In addition, the mapping profiles of each sample are available 

for users to assess the mapping quality. On the website, users could monitor the progress 

of the job and each of its stages in real-time (Figure 3). Our server will notify users when 

the job starts and completes via emails. The web-based application was written in PHP 

with a core written in Perl. It is freely accessible on SystemsBio Lab website 

(http://sysbio.cvm.msstate.edu). 

 

Figure 3 Job status page (job complete). 

 

Testing Datasets and Performance Evaluation 

Two datasets were used to evaluate the performance of this web-based influenza 

genome assembly pipeline. The reference-based mode was investigated with the first 

dataset that comprises NGS data for five influenza reassortants generated through 
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reassortment between a canine H3N2 virus (A/canine/Guangdong/1/2006, H3N2, 

Guangdong/1) and a 2009 pandemic H1N1 virus (A/California/04/2009, H1N1, 

California/04). The HA gene segment of these reassortants originated from the canine 

H3N2 virus and the other seven gene segments were derived from either parental virus. 

The complete genomes of these two parental strains were downloaded from GenBank 

under the accession number GU433345 to GU433352 and FJ966079 to FJ966086 and 

used as references for genome assembly. 

The second dataset comprises NGS data for five wild bird origin AIV strains 

obtained from earlier surveillance. The subtype of these samples and origin of each gene 

segment are unknown. The genomes of these samples were assembled with the de novo 

mode imbedded in this pipeline. The resulting genomic sequences were compared with 

those generated by CLC Genomics Workbench 9.0.1 (CLC bio, Aarhus, Denmark), 

which is a commercially available software that provides genomic analyses and assembly 

package. In CLC Genomics Workbench, trimmed reads were de novo assembled to 

generate continuous sequences using the contig sequences (fast) mode and the contig 

length threshold was set to 200. Reads were mapped to the references that were found by 

BLAST the resulting contigs to influenza nucleotide database. 

Results 

Under the reference-based assembly mode, this pipeline first investigates the 

quality of the raw NGS data for the five reassortant viruses. Quality control results 

showed that the number of read pair for each sample ranges from 289,554 to 347,858. 

The length of reads falls in the range from 32 bp to 301 bp. The average quality score for 

each position range from 34.45 to 36.64. The quality of the raw NGS data was improved 
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through quality trimming. Quality trimming retained around 85% of the reads in the raw 

data and increased the average base quality to the range between 36.59 and 37.43 (Figure 

4). 

Examination of the mapping profile showed that more than 98.95% of the 

trimmed reads were successfully mapped to the eight reference sequences for each 

sample. A 100% coverage was observed for all eight reference sequences for each sample 

and the average mapping depth for each reference sequence ranges from 2,855 to 7,642. 

The consensus sequences generated by this pipeline were compared with those obtained 

from GenBank. Among the 40 newly generated genomic sequences, 19 sequences 

corresponding to six gene segments were identical to those from GenBank; and 21 

sequences corresponding to the remaining nine gene segments possess one to six 

nucleotide substitutions. The nucleotide substitutions were consistent for genomic 

sequences corresponding to gene segment derived from the same parental virus. For 

example, five genomic sequences of the HA gene segment originated from the canine 

H3N2 virus all have two nucleotide differences: A695T and T713G. Further investigation 

of the mapping profile showed adequate mapping depth and consensus for these 

positions. The nucleotide substitutions were not introduced by this pipeline but may 

originate from manipulation of these samples such as adaptation during viral culture. 

These results suggested that the reference-based assembly mode in this pipeline could 

successfully recover the complete genome from raw NGS data of influenza virus. 
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Figure 4 Reference-based assembly mode result page.  

 

Next, the performance of the de novo assembly mode was investigated. Among 

the five tested samples, eight reference sequences corresponding to eight gene segments 

were found for four samples. Thus, these four samples were designed as single infection. 



www.manaraa.com

 

36 

More than 99.00% of the trimmed reads were successfully mapped to the references. A 

100% coverage was observed for the eight reference sequences of four single infection 

samples and the average mapping depth for each reference sequence ranges from 862 to 

6,817 (Figure 5). Genomic sequences generated by this pipeline were compared with 

those by Genomics Workbench and results showed a 100% sequence identity. For the last 

sample, this pipeline found nine reference sequences comprising two references for the 

NA gene segment corresponding to the subtype N2 and N7, respectively. The resulting 

sequences from this pipeline comprise two complete NA sequences of the subtype N2 

and N7. In addition, one reference sequence of the subtype H7 was identified for the HA 

gene segment. Thus, this sample was assigned to mixed infection on the basis of these 

results. 

 

Figure 5 Coverage of resulting sequences of de novo assembly mode. 
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Discussion 

In summary, a publically available web-based pipeline for analyzing and 

assembling NGS data of influenza virus was developed. This pipeline enables the 

detection of eight closely matched references, full genomic assembly for influenza 

genome, and detection of the presence of mixed infection of multiple IAVs in a sample. 

The web-based application provides a user-friendly graphic interface and visualization 

for users. The pitfall of this study is that, for a sample with mixed infections, this pipeline 

still has difficulties in classifying the short reads and recovering homologous genomic 

sequences. 
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THE GENESIS OF A NOVEL LPAI H10N8 VIRUS AND THE SOURCE OF  

H10N8 HUMAN INFECTIONS IN CHINA 

In December 2013, a novel LPAI H10N8 virus emerged, causing three human 

infections in Jiangxi, China (170). Genetic analysis showed that the novel virus was a 

reassortant comprising HA and NA gene segments from wild bird origin IAVs and the six 

internal gene segments from the H9N2 viruses circulating among domestic poultry in the 

region; however, the source of human infections with the novel LPAI H10N8 virus was 

not determined. LPMs have been identified as a high risk factor for the zoonotic 

transmission of AIVs in Southern China (182) and we hypothesized that LPMs are the 

source of H10N8 human infections. We characterized 361 samples collected from April 

2013 to January 2014, including 217 samples collected prior to the detection of H10N8 

human infection, at the LPM visited by the first index case. Results showed a gradual 

increase in IAV prevalence and detection of H10 viruses. AIVs that are genetically close 

to the human H10N8 isolate were recovered from samples collected in this LPM. In 

addition, we performed HI assays for 800 sera samples collected from chickens and 

ducks at five LPMs in Nanchang and observed high seroprevalence of H10 virus. These 

findings suggested that LPM is the most probable source of human infection with this 

novel H10N8 virus, and this virus appears to present throughout the LPM system in the 

city. These findings highlight the role of LPMs in the zoonotic transmission of AIVs, and 
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suggest influenza ecosystem in Southern China could favor the emergence of novel IAV 

strains that potentially present risk to both animal and human health. Reduction of the 

influenza virus burden in LPMs is essential in preventing future emergence of novel IAV 

strains with zoonotic and pandemic potential. 

Introduction 

LPMs are considered as an important link in the ecology and epidemiology of 

IAVs (173). LPMs host a large number of birds among different species in a high-density 

setting. Live animals are usually brought into the LPMs on a daily basis, and live animals 

could be carried over in LPMs from one day to the next and even up to weeks for some 

birds. Thus, LPMs provide an ideal environment for maintenance and transmission of 

IAVs among these birds and facilitate diversification of IAVs through reassortment. In 

addition, LPMs provide an environment for direct contact between humans and infected 

live animals and could serve as the source of potential zoonotic transmission of IAVs.  

In the United States, LPAI H7N2 virus was detected in the LPMs in the northeast 

in 1994, and this virus continued to circulate in the LPMs until 2006 (129, 181). 

Reassortment was observed between LPAI H7N2 and other IAVs circulating in the 

LPMs. In 2003, a LPAI H7N2 virus strain was isolated from an immunocompromised 

man with fever and community-acquired pneumonia in New York (202). Although the 

source of this human infection case could not be determined, the virus was suspected to 

originate from the LPMs. 

In China, the association between LPMs and zoonotic transmission of AIVs was 

suggested by reported human infections of HPAI H5N1 and LPAI H9N2 viruses (Figure 

6). In May 1997, an avian origin H5N1 IAV strain was isolated from a boy died of 
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respiratory illness in Hong Kong (20). A total of 18 cases of human infection with the 

H5N1 virus were reported in Hong Kong by the end of the year and six cases were fatal. 

Human infections with LPAI H9N2 virus were reported in China in 1999 (176), 2003 

(203), and 2013 (204), respectively. LPMs were indicated to be the source of human 

infections with H5N1 and H9N2 viruses (182). Human infection with a novel LPAI 

H7N9 virus was first reported in eastern China in March 2013 (177, 185). LPAI H7N9 

virus has caused more than 500 human cases and claimed >100 lives ever since 

(http://www.who.int/influenza/human_animal_interface/influenza_h7n9/en/). LPMs were 

also indicated as the most likely source of human infections with the H7N9 virus. This 

was supported by the significant decrease of mean daily number of infections in major 

cities in China following measures taken to close LPMs (186). 

In December 2013, human infection with a novel avian origin H10N8 virus was 

reported in Jiangxi, China. The first patient infected with H10N8 virus was hospitalized 

on November 30, three days after illness onset (170). The patient had visited a local LPM 

four days prior to the illness onset. Genetic analysis results showed that the novel H10N8 

virus was a reassortant possessing HA and NA gene segments from wild bird origin IAVs 

and six internal gene segments from poultry-origin H9N2 virus. Two more cases of 

human infections with this novel H10N8 virus were reported in January and February 

2014, in Jiangxi. The source of human infections with this virus was not determined. We 

hypothesize that local LPMs are the source of human infections and we analyzed 361 

influenza virus samples collected in the LPM visited by the first patient to infer the 

possible source of the zoonotic transmission of the novel H10N8 virus. 
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Figure 6 Avian origin influenza A viruses that caused zoonotic infections in Southern 
China during the past two decades. 

 

Materials and Methods 

Sample Collection 

Sampling was conducted in the LPM at the Donghu District of Nanchang City, 

Jiangxi from April 5, 2013 to January 1, 2014. A total of 361 swabs were collected on ten 

individual time periods, April 5 (number of samples, 47), April 9 (13), June 16 (23), July 

25 (64), August 10 (57), August 24 (13), December 12 (46), December 17 (35), 

December 22, 2013 (36), and January 1, 2014 (27) (Table 1). These samples were 

collected predominantly from chicken, duck, goose, and four minor species, including 

pheasant, guinea fowl, pigeon, and turtle doves. In addition, 47 environmental samples 



www.manaraa.com

 

42 

were collected by swabbing feces in the cages and on the floor of this LPM, especially 

when samples from live birds were not accessible. The rectal swabs were collected from 

waterfowl species such as ducks and geese, whereas both oropharyngeal and rectal swabs 

were taken from the terrestrial birds, including chickens, pigeons, guinea fowl, and turtle 

doves. 

The swabs from each bird or environmental specimen were placed in a tube with 

M199 transport medium (GIBCO, location) containing 0.5% bovine serum albumin 

(BSA) and Penicillin G (2 X 106 U/liter), Streptomycin 200 mg/liter. Samples were kept 

in an ice box before and during shipment to the laboratory and then stored at -80 °C. All 

manipulations of these samples were conducted under enhanced Biosafety Level 2 (BSL-

2) containment facilities at the College of Animal Science and Technology, Jiangxi 

Agricultural University. 

RNA Extraction and IAV Screening 

Viral RNA was extracted from the clinical swabs using the QIAamp Viral RNA 

mini Kit (Qiagen, Valencia, CA) in accordance with manufacturer’s instructions. These 

viral RNA samples were subject to M-gene based IAV screening followed by H7 subtype 

specific screening using the AgPath-ID™ One-Step RT-PCR Reagent according to the 

diagnosis manual from WHO) 

(http://www.who.int/influenza/resources/documents/molecular_diagnosis_ 

influenza_virus_humans_update_201108.pdf). The H7 specific primer was adapted from 

(205). 
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Viral Isolation 

The non-H7 positive swabs were inoculated into ten day old specific pathogen 

free chicken embryonated eggs. The eggs were inoculated for 72 hours at 37°C before 

harvesting.  

Hemagglutination and Hemagglutination Inhibition Assays 

Both hemagglutination and hemagglutination inhibition assays were conducted 

according the instruction described in the OIE manual for avian influenza diagnosis using 

0.5% chicken red blood cells 

(http://web.oie.int/fr/normes/mmanual/2008/pdf/2.03.04_AI.pdf). The goat anti-H10 

polyclonal antisera were diluted to 1:40 before the HI assays. 

Reverse Transcription, PCR, and Genomic Sequencing 

The full-length cDNA were amplified from the swabs using SuperScript™ One-

Step RT-PCR (Invitrogen, Grand Island, NY). Briefly, total RNA 5 ul, uni-12 2 ul, dNTP 

1 ul, and RNase/DNase free water 5 ul, were incubated at 65°C for five minutes and then 

one minute on ice. Then 1 ul of DTT, 1 ul of RNAse, and 4 ul of buffer, and 1 ul of RT 

superscript III were added and incubated at 55°C for one hour and then 75°C for 15 

minutes. PCR amplification was performed with universal primers U-12 and U-13 

Phusion® High-fidelity PCR MMW/HF buffer (New England Biolabs, Ipswich, MA) 

according to the manufacturer’s instruction and followed by eight pairs of gene specific 

primers (206). PCR product was then purified using QIAquick® PCR Purification Kit 

(Qiagen, Valencia, CA) according to the manufacturer’s protocol. 
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All M-gene positive samples were subjective to full genome sequencing using 

next generation sequencing. Sequencing libraries were prepared from 1 ng cDNA using 

the Nextera XT kit according to manufacturer’s instructions (Illumina, San Diego, CA). 

Sequencing was performed on an Illumina MiSeq using V2 reagent kits according to the 

manufacturer’s instructions. Sanger sequencing was utilized to fill sequence gaps from 

the MiSeq run using gene specific primers for the corresponding gene segment. The PCR 

product was purified by QIAquick® Gel Extraction Kit (Qiagen, Valencia, CA) 

according to manufacturer’s protocol and subjected to sequencing using ABI 3730xl 

capillary DNA Analyzers. 

Genomic Assembly 

Genomic assembly was conducted with CLC Genomics Workbench 6 (CLC bio, 

Aarhus, Denmark). Quality trimming was first conducted to remove reads with two or 

more ambiguous nucleotides and those below a quality cutoff value of 20. The quality-

filtered reads were de novo assembled in the fast contig mode and then each assembled 

contig was BLAST searched against the influenza database to select the best-matched 

reference sequence. Quality-filtered reads were mapped to the reference sequence and 

consensus sequences were generated. If two or more genetically distinct references were 

identified, the quality-filtered reads were matched to each and multiple consensus 

sequences were generated. If these consensus sequences from a single sample were 

genetically distinct, this sample was defined as a mixed infection. Each consensus 

sequence was examined manually to correct potential assembly errors, such as single 

nucleotide deletions and insertions. 
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Phylogenetic Analysis and Molecular Characterization 

To recover evolutionary history of H10N8 virus, sequences recovered from this 

study were combined with those from public database for phylogenetic analyses. 

Phylogenetic tree was inferred using Maximum Likelihood method implemented in 

GARLI version 0.951 (207). 

Serological Surveillance 

To investigate the spread of H10N8 virus in the LPMs system in Nanchang, we 

collected a total of 800 sera samples from chickens and ducks in five LPMs, from 

February 25, 2014, to March 27, 2014. These five LPMs cover a geographic area of about 

160 square kilometers and the major metropolitan area of Nanchang. Sera positive was 

determined using HI assay with a H10N8 virus isolated from the surveillance. 

Results 

The LPM that the first H10N8 patient visited is in the Donghu district of 

Nanchang City; and we conducted sporadic virologic surveillance at this LPM since April 

2013. The number of poultry retailers within this LPM ranges from 20 to 30, and a total 

of around 1,500 birds are sold per day. The number of poultry retailers and birds being 

sold vary with season change and other factors. Typically about 90% of birds sold in this 

market are chickens and ducks with wild birds occasionally being sold as well. Between 

April 5, 2013, and January 1, 2014, we collected 361 samples from this LPM on ten 

separate sampling occasions (Table 1). These samples included 192 paired oropharyngeal 

and cloacal swabs from chickens, pheasant, guinea fowl, pigeon, and turtle doves, as well 
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as 122 cloacal swabs from ducks and geese. In addition, 47 environmental samples were 

also collected by swabbing feces in the cages and from the floor of this LPM. 

The proportion of IAV positive samples among these collected samples, as 

measured by M-gene real time PCR, increased from 4.3% on April 5, to 38.5% on 

August 24, and to 87.0% on December 12, 2013. The proportion of IAV positive 

samples, albeit still high, dropped to 48.0% on January 1, 2014 (Table 1). Among these 

M-gene positive specimens, ten were subtyped as H7 by H7 specific real time PCR (205) 

and 16 as H10 by H10 specific HI assays (Figure 7, Table 1).  

 

Figure 7 Isolation of H10 influenza A virus from the LPM visited by the first H10N8 
patient. 

 

To determine if H10N8 viruses, had been and had continued to circulate in this 

market, we sequenced positive samples collected on the April, December, and January 
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sampling occasions (the first index case was admitted to the hospital in late November). 

From the April sampling, we sequenced all five positive samples and detected H7 and H9 

HA genes in conjunction with N2 and N9 NA genes. Although no H10 or N8 genes were 

detected, we found PB2, PA, NP, MP, and NS genes were genetically similar to the 

human H10N8 virus. From the December sampling, we successfully generated sequences 

from 44 of the 86 positive samples. Twelve samples contained H10 genes, all of which 

also contained N8 genes, though some did appear to be mixed infections containing gene 

segments from other viruses such as H9N2. From the January sampling, six samples had 

both H10 and N8 genes (Table 2). 
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The presence of mixed infections makes it difficult to determine the exact 

genotypes of the viruses. For example, there were 16 samples that contained H10 genes, 

12 that contained H9 genes, two that contained H6 genes, and three that contained two 

HA genes (two H10/H9 and one H7/H9). Among the 16 samples that contained H10 

viruses, only two were of the N8 subtype; the remaining 14 samples were mixed 

infections with both N2 and N8 genes present. The two mixed H10/H9 samples had both 

N2 and N8 NA genes as well. Besides the mixed HA and NA samples, 12 had at least 

two copies of the same gene segments, such as PB2, PB1, NP, MP, and NS, and these 

gene segments were genetically distinct. Of the 57 samples sequenced, 25 samples were 

determined to have at least two genetically distinct influenza viruses. 

Phylogenetic analyses of the generated sequences showed that 18 H10 and 19 N8 

genes forming a monophyletic clade with the corresponding genes of the human H10N8 

virus (Figure 8, Figure 9). The H10 and N8 genes were genetically close to those of 

viruses isolated from wild birds: H10 gene from the Eurasian lineage and N8 gene from 

the North American lineage. In contrast, the internal genes sequenced were close to those 

derived from AIVs circulating among domestic poultry and some are similar to those 

present in the human H10N8 virus 

(Phylogenetic_trees_of_internal_genes_recovered_from_the_samples_collected_at_the_

LPM.pdf). These data confirm that nucleotide sequences of viruses more than 99% 

identical to those of the human H10N8 virus were circulating in this LPM, supporting the 

likelihood that the zoonotic transmission had occurred here. 

The diversity of internal gene segments revealed that multiple distinct viruses 

were circulating in this individual LPM. The PB2 genes were clustered into seven distinct 
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genetic lineages, PB1 into five, PA into four, NP into six, MP into six, and NS into three 

(Phylogenetic_trees_of_internal_genes_recovered_from_the_samples_collected_at_the_

LPM.pdf). Among these genes, PB2 from the 18 samples alone belong to five distinct 

genetic lineages. In contrast, NP, MP, and NS gene of those samples with H10 gene were 

similar. None of the internal genes of these H10N8 samples were unique from those 

found in H9 and other subtypes of IAV from this LPM. The genetic lineages containing 

the samples collected on April 5, 2013, were surprisingly associated with the H10 viruses 

in December 2013. 
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Figure 8 Maximum likelihood phylogenetic trees of H10 genes recovered from the 
samples collected at the LPM. 

The genes of IAV recovered from our surveillance are marked in red and that from the 
human H10N8 isolate are in green.  



www.manaraa.com

 

55 

 

Figure 9 Maximum likelihood phylogenetic trees of N8 genes recovered from the 
samples collected at the LPM. 

The genes of IAV recovered from our surveillance are marked in red and that from the 
human H10N8 isolate are in green. 

The amino acid sequences at the receptor binding sites of the H10 proteins 

encoded by the genes from this LPM were identical to those in the human H10N8 isolate, 
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and the majority of these sites except 128 (137, H3 position) and 181 (193, H3 position) 

were shown to be divergent from H10 AIVs from public databases: the H10 viruses 

recovered in this study had R128 (100%) and I181 (61%) while those from public 

database predominantly had K (67.8%) and T (97.7%), respectively (Table 3). The 

human H10N8 isolate has R128 and T181. The impact of I181T on host or tissue tropism 

of the H10N8 virus is unknown; nevertheless, the receptor binding properties are 

predicted to be avian-like. 
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Analysis of NA gene sequences suggests that these viruses are sensitive to 

oseltamivir and other neuraminidase inhibitors (208). However, 94.1% of the M2 

sequences have S31N (209) indicating that they are resistant to amantadine, as was the 

human H10N8 isolate (210) (Table 3). All PB2 genes had E627 whereas the PB2 gene of 

the human H10N8 isolate had K627, which is considered a marker of mammalian 

adaptation (211) (Table 3). 

That we were able to detect H10N8 virus in December and early January 

following human infection raised the question of how widely this virus might be spread 

within the LPM system in the region. To estimate this, we conducted serologic 

surveillance at four additional LPMs in Nanchang city. We collected a total of 800 sera 

from chickens and ducks at these five LPMs, from February 25, 2014, to March 27, 2014 

(Figure 10). These five LPMs cover a geographic area of about 160 square kilometers 

and the major metropolitan area of Nanchang. Using HI assays with a H10N8 virus 

isolated from the surveillance described above and a cutoff of 1:20, we found that 9.4% 

of the 800 sera samples were positive. The H10 positive sera were distributed across all 

five sampled LPMs and from both ducks and chickens. The highest H10 positive 

percentile on a single market and a single sampling period (34.0%) was detected on 

March 9, at LPM A, which the index patient visited (Figure 10). Of note, LPM B located 

across the Gan River from LPM A, had close to 50% H10 positivity by the end of March. 

These data showed that H10 viruses were widespread in the region’s LPM system. 

Although we are unable to determine the exact nature of the H10 virus from these 

serologic studies, two human cases with H10N8 infection in Nanchang (in January and 

February 2014) are consistent with it being the zoonotic virus. Of these two additional 
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human cases, the second human case was documented with a visit to a local LPM prior to 

illness onset whereas the exposure history of the third human case was unclear. 

 

Figure 10 Distribution of H10 seropositive samples collected from February 25 to 
March 27, 2014 and across five LPMs in Nanchang city. 

The seropositive samples were determined by HI assays with a H10N8 virus. LPM A was 
the one that the first index H10N8 patient visited in November 2013. The highest H10 
positive percentile in a single sampling period was marked for each LPM. 

Discussion 

In summary, we show that the LPM visited by the index H10N8 female patient 

was very likely the source of her infection and that the virus appears to have been present 

throughout the LPM system in Nanchang, China. However, the findings in this study 
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were limited by the small number of samples we collected and by the fact that the H10N8 

virus prior to the emergence of the first human case was lacking. It is unclear whether 

these H10N8 viruses were introduced into the LPM system or were generated in the 

LPMs. Continuous influenza surveillance is needed to monitor the epidemiology of the 

novel H10N8 virus in Nanchang as well as those areas that share poultry movements with 

Nanchang. In addition to those minor poultry species, there are a variety of chicken and 

duck species in the LPM; further studies will be needed to identify the reservoir for the 

H10N8 virus among these bird species, and such information will be useful for 

developing effective strategies for prevention and control of the H10N8 virus at the LPM. 

AIVs were identified in LPMs in China a few decades ago. The first LPAI H9N2 

virus was initially isolated from domestic poultry in 1994 (212), and has since been found 

to be endemic among domestic poultry in China (213). Besides infecting poultry, this 

H9N2 virus has caused sporadic infections in humans (176, 203). The H9N2 virus has 

undergone rapid evolution and contemporary H9N2 viruses are both genetically and 

antigenically diverse (214-216). The internal gene segments of H9N2 viruses contributed 

to the genomic diversity of HPAI H5N1 viruses in China (217, 218). The novel LPAI 

H7N9 viruses emerged in Yangze Delta possess six gene segments derived from H9N2 

viruses, and mixed infections of H7N9 and H9N2 viruses are very common (185). This 

study suggested further that novel H10N8 IAVs were frequently co-infected with H9N2 

viruses, and their internal gene constellations were similar to each other. It seems that this 

diverse genetic pool is potentially more dangerous than any single virus. With any chance 

to interact with other subtypes of HA and NA genes, novel reassortants could emerge, 

including some strains that are antigenically distinct from the contemporary human IAVs. 
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These emerging viruses, including H5N1, H7N9, H9N2, and H10N8, are continuous 

threats to public health. 

A large influenza vaccine campaign against HPAI H5N1 viruses has been 

conducted in China since 2004. H9N2 vaccines have also been distributed to domestic 

poultry farms but their implementation has been comparatively less effective. With the 

substantial subtype and genetic diversity of viruses within LPMs, vaccination is not a 

realistic strategy to reduce the levels of virus circulation and subsequent zoonotic 

infections. Other intervention strategies must, therefore, be used to control viral flow into 

the LPMs. As it seems impossible to close all LPMs simultaneously, more practical 

policies and approaches such as routine surveillance and regular market disinfection 

should be urgently implemented. 
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THE GENESIS OF A NOVEL HPAI H7N8 VIRUS AND THE EVOLUTIONARY 

PATHWAY LEADING TO OUTBREAK AMONG DOMESTIC POULTRY  

IN INDIANA, THE UNITED STATES 

Introductions of LPAI viruses of subtypes H5/H7 into poultry from wild birds 

have the potential to mutate to HPAI, but such viruses’ origin is often unclear. In January 

2016, a novel H7N8 HPAI virus caused an outbreak in turkeys in Indiana, USA. To 

determine the virus’s origin, we sequenced genomes of 441 wild bird–origin IAVs from 

North America and subjected them to evolutionary analyses. Results showed that the 

H7N8 LPAI virus most likely circulated among diving ducks in the Mississippi flyway 

during autumn 2015 and was subsequently introduced to Indiana turkeys, in which it 

evolved into a HPAI form. Preceding the outbreak, an isolate with six gene segments 

(except NP and MP) sharing >99% sequence identity with those of H7N8 turkey viruses 

was recovered from a diving duck. H4N8 IAVs from diving duck possessed five H7N8–

like gene segments (PB2, PB1, NA, MP, and NS). Our findings suggest that viral gene 

constellations circulating among diving ducks can contribute towards the emergence of 

IAVs that can affect poultry. Diving ducks may serve as a unique reservoir, contributing 

to the maintenance, diversification, and transmission of IAVs in wild birds.  
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Introduction 

IAVs exist in a complex ecosystem that involves various hosts, including humans, 

swine, horses, dogs, sea mammals, and numerous wild and domestic bird species. Among 

these hosts, wild aquatic birds are considered the natural reservoir for IAVs and bird 

migration plays an important role in the dispersal of IAVs. Interactions of migratory bird 

at congregation sites enable transmission of IAVs and facilitate genetic diversity through 

reassortment. Periodic introduction of IAVs from wild birds to domestic poultry 

contributes to emergence of novel IAV strains that occasionally cause outbreaks among 

domestic poultry. Following such introductions into domestic poultry, LPAI H5 and H7 

viruses have the potential to evolve into HPAI viruses through two mechanisms: 1) 

acquisition of basic amino acids in the cleavage region of the HA protein by insertion or 

substitution (188), and 2) recombination with another gene segment(s) or host genome 

(60, 63, 123). HPAI virus is of particular concern because of the devastating consequence 

it brings to the poultry industry; in some outbreaks, mortality could be as high as 100%. 

The threats brought by the introduction of entire IAVs or IAV gene segments 

from wild birds to domestic poultry has been repeatedly demonstrated by the emergence 

of novel HPAIs in the Americas. HPAI H5 viruses caused outbreaks of disease among 

domestic poultry in 1983 (190), 1994 (191), and 2014 and 2015 (71). In addition to 

subtype H5 viruses, HPAI H7 viruses have been frequently reported in the Americas. 

There were four reported HPAI H7N3 outbreaks between 2002 and 2016: one outbreak in 

Chile (2002) (60), two distinct outbreaks in Canada (2004 and 2007) (61, 62), and one 

outbreak in Mexico (2012). High mortality among domestic poultry was reported for 

these four HPAI H7N3 outbreaks. Moreover, HPAI H7N3 strains isolated from the 
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outbreak in Canada (2004) caused mild respiratory symptoms and conjunctivitis in at 

least two humans (192). HPAI H7N3 strains from the outbreak in Mexico (2012) caused 

conjunctivitis in two poultry workers (64). 

Studies conducted after outbreaks among domestic poultry have usually been 

retrospective analyses to determine the identities of the putative precursors of the 

outbreak strains. However, direct evidence is lacking on the time of emergence, location 

for reassortment, and wild bird species that contribute to the genesis of a particular HPAI 

strain. In most cases, the limited surveillance in wild birds prior to the detection of a 

novel HPAI strain impedes our understanding of the mechanisms underlining the 

emergence. 

On January 15, 2016, The United States Department of Agriculture’s Animal and 

Plant Health Inspection Service (APHIS) announced the detection of a novel HPAI H7N8 

virus in a commercial turkey flock experiencing significant mortality in Dubois Country, 

Indiana. APHIS reported the identification of LPAI H7N8 virus in eight turkey flocks in 

the control area surrounding the location of the initial HPAI case. The detection of this 

virus represents the first identification of HPAI H7N8 virus in domestic species. The 

objective of study in this chapter was to understand the molecular mechanisms leading to 

the emergence of this novel H7N8 virus.  

We hypothesized that 1) the H7N8 virus identified in turkeys in Indiana was 

initially introduced from wild birds and developed high pathogenicity within poultry 

production systems; 2) genetic analysis of a large number of available contemporary wild 

bird-origin IAV isolates would indicate what wild bird species and IAVs contributed to 

the emergence of the HPAI H7N8 virus. In a collaborative effort, our team sequenced 
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441 IAVs obtained through wild bird influenza surveillance during 2007–2016 across 

North America. We used the sequence data generated in this study together with the IAV 

genomes recovered in association with the H7N8 outbreak in Indiana turkey and public 

sequence data to infer the possible origin(s), evolutionary pathway(s), and transmission 

route(s) of this novel HPAI H7N8 virus.  

Materials and Methods 

Viruses  

To determine the genetic ancestry of the H7N8 IAV strains associated with the 

outbreak of disease in Indiana turkeys, we sequenced a collection of 441 archived wild 

bird–origin IAVs obtained throughout North America from influenza surveillance during 

2007–2016 (Figure 11). The wild bird–origin isolates represent strains recovered from 

Alberta, Canada, and from 38 states within the United States of America. IAVs from 

migratory birds from the Atlantic, Central, Mississippi, and Pacific flyways were 

included in our dataset. Complete genomes of H7N8 IAVs detected in Indiana turkeys 

were downloaded from GenBank: (accession nos. KU558903–KU558910 and 

KU585905–KU585920). One of the strains was a HPAI virus, A/turkey/Indiana/16-

001403-1/2016(H7N8) (Indiana/16-001403-1), and the other two strains were LPAI 

viruses, A/turkey/Indiana/16-001573-2/2016(H7N8) (Indiana/16-001573-2) and 

A/turkey/Indiana/16-001574-7/2016(H7N8) (16-001574-7). 

http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=KU558903
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=KU558910
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=KU585905
http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?val=KU585920


www.manaraa.com

 

 

68 

 

Fi
gu

re
 1

1 
G

eo
gr

ap
hi

c,
 te

m
po

ra
l, 

an
d 

ta
xa

 d
is

tri
bu

tio
n 

of
 4

41
 in

flu
en

za
 A

 v
iru

s s
tra

in
s s

ub
je

ct
ed

 to
 g

en
om

ic
 se

qu
en

ci
ng

 in
 th

is
 

st
ud

y.
 

(a
) R

ed
 tr

ia
ng

le
s i

nd
ic

at
e 

th
e 

st
at

e/
pr

ov
in

ce
 w

he
re

 th
e 

sa
m

pl
es

 w
er

e 
co

lle
ct

ed
. (

b)
 N

um
be

rs
 a

bo
ve

 e
ac

h 
co

lu
m

n 
in

di
ca

te
 th

e 
nu

m
be

r o
f i

nf
lu

en
za

 A
 v

iru
s i

so
la

te
s f

ro
m

 e
ac

h 
ye

ar
. (

c)
 D

is
tri

bu
tio

n 
of

 st
ra

in
s a

m
on

g 
di

st
in

ct
 h

os
t g

ro
up

s. 
M

ap
 o

f N
or

th
 A

m
er

ic
a 

w
ith

 U
S 

St
at

es
, C

an
ad

ia
n 

Pr
ov

in
ce

s, 
an

d 
M

ex
ic

o 
by

 F
re

eV
ec

to
rM

ap
s.c

om
, h

ttp
s:

//f
re

ev
ec

to
rm

ap
s.c

om
/w

or
ld

-m
ap

s/
no

rth
-

am
er

ic
a/

W
R

LD
-N

A
-0

2-
00

03
. 



www.manaraa.com

 

69 

Phylogenetic Analyses 

Preliminary phylogenetic analyses were performed with the complete genomes of 

three H7N8 strains originating from turkeys in Indiana and a genomic sequence dataset 

(219) that represents the two major geographically dependent genetic lineages, North 

American and Eurasian, for eight gene segments. The next round of phylogenetic 

analyses were conducted with an integrated dataset that comprised the complete genomes 

of three H7N8 turkey strains, sequence data for 441 IAVs generated in this study, and 

sequence data downloaded in May 2016 from the Influenza Research Database (220) for 

IAVs isolated from wild and domestic birds in the Americas. The number of genomic 

sequences used in analyses for each gene segment is as follows: PB2 (number=7762), 

PB1 (n=7813), PA (n=7859), HA (n=1132), NP (n=7327), NA (n=1611), MP (n=7776), 

and NS (n=7586). In order to perform more detailed analysis on the timing of the 

emergence of the H7N8 viruses, sequences closely related to the H7N8 turkey strains 

(referred to henceforth as ‘the H7N8–outbreak lineage’) were selected for each gene 

segment from the phylogenetic trees. The number of genomic sequences used in analyses 

for each gene segment is as follows: PB2 (number=796), PB1 (n=709), PA (n=757), HA 

(n=721), NP (n=651), NA (n=281), MP (n=742), and NS (n=526). 

Gene segment–specific phylogenetic trees were generated using the maximum–

likelihood method implemented in RAxML v8.1.17 (221). A general time–reversible 

model of nucleotide substitution and a gamma–distributed rate variation among sites was 

applied throughout the analyses. Sequence alignments were performed by using 

MUSCLE v3.8 (222). We manually examined alignments to ensure accuracy and retained 

only the coding region for phylogenetic analyses. 
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Molecular Clock 

We estimated the time–scaled phylogenies, nucleotide substitution rate, and time 

to most recent common ancestor (TMRCA) using the Bayesian Markov Chain Monte 

Carlo method implemented in BEAST v1.8.0 (223). Genomic sequences with complete 

sampling dates (exact month, day, year) were selected for each gene segment from the 

H7N8–outbreak lineage on the basis of phylogenetic trees, and the number of genomic 

sequences used in analyses for each gene segment is as follows: PB2 (number=268), PB1 

(n=227), PA (n=225), HA (n=206), NP (n=224), NA (n=102), MP (n=220), and NS 

(n=160). We used the SRD06 partitioned substitution model, uncorrelated lognormal 

relaxed clock model, and Bayesian skyline coalescent tree prior in the analyses. For each 

gene segment, we performed two independent runs with a chain length of 100–300 

million steps sampled every 10,000 steps (results in >10,000 samples per run). The 

results were analyzed in Tracer v1.6 (http://tree.bio.ed.ac.uk/software/tracer/). Adequate 

burn–in was determined from the trace of each run, and 2%–10% of the initial steps, 

representing poor configuration, were removed from further analysis. Convergence of 

each run and consistency between two runs was assessed, and results from two runs were 

combined for analyses to ensure an adequate effective sample size (>200) was reached 

for relevant parameters. The maximum clade credibility trees were summarized with 

TreeAnnotator v1.8.0 (http://beast.bio.ed.ac.uk/TreeAnnotator/) and edited in FigTree 

v1.4.0 (http://tree.bio.ed.ac.uk/software/figtree/). 

Discrete Phylogeographic Analyses 

The hosts of IAVs in our study were categorized into 11 different groups: 

dabbling duck, diving duck (including sea duck), goose and swan, gull and tern, 
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passerine, poultry, raptor, seabird, shorebird, other avian, and other non–avian hosts. In 

an attempt to keep the number of sequences per host group as balanced as possible, we 

conducted sub–sampling for sequences within the H7N8–outbreak lineage for each gene 

segment. For each sampling year, 20 sequences were selected for each host group; if a 

host group had <20 sequences, all sequences were retained. For the analysis, we used an 

asymmetric substitution model with the Bayesian Stochastic Search Variable Selection 

and a strict clock model. Two independent runs of chain length of 150 million steps with 

sampling every 10,000 steps (results in 15,000 samples per run) were performed for each 

gene segment. Similar approach for analyzing the resulting log files of molecular clock 

data was applied to analyze burn–in, convergence of each run, and generate maximum 

clade credibility phylogenetic trees. Specifically, >10% of initial steps representing poor 

configuration were removed as burn–in. Mean transition rate and the corresponding 

indicator were calculated from the resulting log files. Bayes Factor (BF) support was 

calculated with the indicator to assess statistical support. Significant transition between 

host groups was determined based on the combination of BF >3 and mean indicator >0.5. 

Therefore, support levels were defined as support (3≤BF<10); strong support 

(10≤BF<100); very strong support (100≤BF<1,000); and decisive support (BF≥1,000). 

Phylogenetic Network 

A phylogenetic network was reconstructed using the quartet–based method 

implemented in QuartetMethods (224). A sequence dataset was built by concatenating the 

sequences of six internal genes for 6,693 IAVs isolated from wild and domestic birds in 

the Americas. The sequences of six internal genes of H7N8 HPAI strain were 

concatenated and the resulting sequence was BLASTed (201) against the dataset. Fifty 
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IAV strains that were most closely related to the H7N8 HPAI stain were selected and 

included in the analysis. 

Genotyping 

Genotypes were defined on the basis of the gene segment–specific phylogenetic 

trees for H7N8 turkey strains and 135 H4N8 IAV strains. A monophyletic clade was 

identified by two criteria: 1) it was supported by a bootstrap value above 70, and 2) all 

sequences in the clade had nucleotide sequence identities >98%, as determined by using 

the hierarchical clustering method implemented in R (https://www.r-project.org/). We 

implemented a stringent cutoff of 98% to identify IAV strains closely related to the H7N8 

turkey strains. The genotype of a genome is the combination of the cluster assignment of 

eight gene segments. 

Results 

H7N8 Virus Originated From IAVs in North American Wild Birds 

To infer the ancestry of each gene segment of the H7N8 viruses detected in 

Indiana turkeys, we first performed preliminary phylogenetic analyses with a collection 

of representative genomic sequences to identify the major genetic lineage to which the 

H7N8 turkey strains belong. Phylogenetic trees support two geographically dependent 

lineages of IAV (North American and Eurasian) for eight gene segments (Figure 12). The 

H7N8 turkey strains were found to share genetic ancestry with IAVs from North America 

for all eight gene segments. 

https://www.r-project.org/
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Figure 12 Maximum likelihood phylogenetic trees for eight gene segments of H7N8 
turkey strains and influenza A viruses representing North American and 
Eurasian genetic lineages.  

H7N8 strains associated with the outbreak of disease in Indiana turkeys are indicated by 
red circles. In (h), black bars indicate two alleles for the NS gene segment. 
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We then performed phylogenetic analyses, focusing on genomic sequences of 

IAVs isolated from wild and domestic birds in the Americas. The phylogenetic tree for 

the H7 gene showed that IAV strains from the Americas could be divided into two 

genetic sub–lineages: those from North America and those from South America 

(Phylogenetic_trees_of_IAVs_isolated_from_wild_and_domestic_birds_in_the_America

s.pdf). The South American sub–lineage included H7N3 HPAI viruses isolated during an 

outbreak in Chile in 2002. Three major genetic clusters were identified in the North 

American sub–lineage: cluster I was comprised of viruses isolated from wild and 

domestic birds in North America during the 1970s to the early 1990s; cluster II contained 

H7N2 IAVs isolated from the live–poultry markets in the northeastern United States 

during1994–2006; cluster III represents contemporary H7 IAVs circulating in North 

America, including viruses isolated from wild and domestic birds. The novel H7N8 

turkey strains grouped with H7 viruses in cluster III and were most closely related to IAV 

strains isolated from wild birds 

(Phylogenetic_trees_of_IAVs_isolated_from_wild_and_domestic_birds_in_the_America

s.pdf, Time_scale_phylogenetic_trees_for_eight_gene_segments.pdf). The H7N3 HPAI 

viruses isolated during three previous outbreaks in North America also grouped with 

contemporary H7 IAVs in cluster III; however, these viruses were associated with 

monophyletic clades divergent from the clade containing H7N8 turkey strains. 

Phylogenetic analyses of the other seven gene segments also showed that the H7N8 

turkey strains clustered with North American wild bird–origin IAV strains and in 

monophyletic clades different from those containing sequences for H7N3 HPAI viruses 

(Phylogenetic_trees_of_IAVs_isolated_from_wild_and_domestic_birds_in_the_America
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s.pdf, Time_scale_phylogenetic_trees_for_eight_gene_segments.pdf). Moreover, in the 

phylogenetic trees for eight gene segments, no poultry–origin IAV gene segments were 

found to be closely related to the H7N8 turkey strains.  

To infer the more detailed evolutionary history of the novel H7N8 viruses, we 

conducted molecular clock analyses for each gene segment using sequences in the clades 

containing the H7N8 turkey strains and those most closely related strains. The resulting 

time–scale maximum clade credibility phylogenetic trees were used to identify viruses 

most closely related to H7N8 turkey strains for each gene segment (Figure 13, 

Time_scale_phylogenetic_trees_for_eight_gene_segments.pdf). The most closely related 

gene segments to H7N8 turkey strains originated from a single isolate, A/Lesser 

scaup/Kentucky/AH0012935/2015(H7N8) (Kentucky/AH0012935), for six gene 

segments (PB2, PB1, PA, HA, NA, and NS) (Table 4). This isolate was recovered from a 

sample collected in Kentucky, USA, on November 28, 2015, approximately seven weeks 

before the outbreak and approximately 200 kilometers from the Indiana turkey farm 

where outbreak was detected. The close relatedness between Kentucky/AH0012935 and 

the novel H7N8 HPAI strain in six gene segments was supported by high nucleotide 

sequence identities, ranging from 99.00% (HA gene) to 99.95% (PA gene) (Table 4). The 

NP gene segments of two isolates recovered from samples collected in Ohio, on October 

18, 2014, A/Northern pintail/Ohio/14OS2209/2014(H5N9) (Ohio/14OS2209) and 

A/Northern pintail/Ohio/14OS2210/2014(H5N9) (Ohio/14OS2210), were most closely 

related (98.40% nucleotide sequence identity) to the NP gene of the novel H7N8 HPAI 

strain (Table 4). The MP gene segment of A/Bufflehead/Illinois/14OS3567/2014(H4N8) 
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was most closely related (99.19% nucleotide sequence identity) to that of the H7N8 

HPAI strain (Table 4). 
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Table 4 Most closely related genes to eight gene segments of the novel highly 
pathogenic avian influenza strain A/turkey/Indiana/16-001403-
1/2016(H7N8). 

Segment Virus Sequence Identity Subtype Sampling Date 
PB2 A/Lesser scaup/Kentucky/AH0012935/2015 0.9987 H7N8 11-28-2015 
PB1 A/Lesser scaup/Kentucky/AH0012935/2015 0.9987 H7N8 11-28-2015 
PA A/Lesser scaup/Kentucky/AH0012935/2015 0.9995 H7N8 11-28-2015 
HA A/Lessers caup/Kentucky/AH0012935/2015 0.9900 H7N8 11-28-2015 

NP A/Northern pintail/Ohio/14OS2209/2014 0.9840 H5N9 10-18-2014 A/Northern pintail/Ohio/14OS2210/2014 
NA A/Lesser scaup/Kentucky/AH0012935/2015 0.9979 H7N8 11-28-2015 
MP A/Bufflehead/Illinois/14OS3567/2014 0.9919 H4N8 11-15-2014 
NS A/Lesser scaup/Kentucky/AH0012935/2015 0.9952 H7N8 11-28-2015 

 

Three H7N8 turkey strains were estimated to share a common ancestor among 

eight gene segments between March 2015 (MP gene) and December 2015 (HA gene) 

(Figure 14, Table 5). The mean estimated TMRCAs for seven of eight gene segments 

(excluding MP gene) was summer and fall (30 June–4 December) of 2015, which 

overlaps the late breeding and autumn migration period of many wild birds inhabiting 

North America. The HA gene was estimated to have the latest TMRCA (mean December 

4, 2015, 95% highest posterior density [HPD] October 30, 2014–January 4, 2016), which 

is close to the time when Kentucky/AH0012935 was collected. The mean evolutionary 

rate for the H7 gene was estimated to be 6.55 x 10−3 substitutions per site per year (95% 

HPD, 5.74–7.52 x 10−3), which is significantly higher than that for the other seven gene 

segments (Figure 14, Table 5). 



www.manaraa.com

 

79 

 

Figure 14 Estimated time to most recent common ancestor and nucleotide substitution 
rates for eight gene segments of H7N8 viruses detected in Indiana turkeys. 

Green circles indicate the estimated mean date (a) or rate (b) and grey bars indicate 95% 
highest posterior density. Blue circles indicate the sample collection time of influenza A 
virus isolate containing the most closely related gene segment to the H7N8 turkey strains. 
Red dash line indicates the sample collection time of the highly pathogenic avian 
influenza H7N8 virus isolated from Indiana turkeys. 

Table 5 Estimated time to most recent common ancestor and nucleotide substitution 
rates for eight gene segments of H7N8 viruses detected in Indiana turkeys. 

 

Substitution rate  
(x10-3 subs/site/year) 

 
TMRCA 

Segment Mean 
95% HPD 

lower 
95% HPD 

upper 
 

Mean 
95% HPD 

lower 
95% HPD 

upper 

PB2 2.99 2.69 3.29  2015-08-22 2015-04-30 2015-11-25 

PB1 3.39 3.03 3.77  2015-09-22 2015-06-21 2015-12-13 

PA 2.66 2.28 3.06  2015-11-06 2015-09-01 2015-12-28 

HA 6.55 5.74 7.52  2015-12-04 2015-10-30 2016-01-04 

NP 2.89 2.53 3.27  2015-08-07 2015-02-28 2015-12-13 

NA 2.28 1.90 2.69  2015-08-27 2015-04-02 2015-12-24 

MP 2.28 1.89 2.70  2015-03-31 2014-06-28 2015-11-13 

NS 2.00 1.56 2.46  2015-06-30 2014-11-30 2015-12-24 
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The sampling time of the most closely related strain for NP gene segment does 

not overlap with the estimated TMRCA (between February 28, 2015 and August 7, 2015) 

(Figure 14, Table 5), suggesting a gap in surveillance and that neither Ohio/14OS2209 

nor Ohio/14OS2210 are the direct predecessor of H7N8 turkey strains. This observation 

is consistent with the genetic distance separating H7N8 turkey strains from other viruses 

in the NP phylogenetic tree 

(Time_scale_phylogenetic_trees_for_eight_gene_segments.pdf). 

Gene Constellation of H4N8 Virus in Diving Ducks Contributed to Emergence of 
The Novel H7N8 Virus 

We investigated possible genetic events that contributed to generation of the 

H7N8 precursor virus in wild birds. The phylogenetic network showed that, in addition to 

Kentucky/AH0012935, a group of H4N8 IAVs isolated from diving ducks (referred to as 

H4N8–DD) during 2011–2014 were closely related, across six gene segments, to the 

H7N8 turkey strains (Figure 15). Further examination of the eight gene segment–specific 

phylogenetic trees indicated that the H4N8–DD viruses had five gene segments (PB2, 

PB1, NA, MP, and NS) closely clustered with the H7N8 turkey strains. The NA, MP, and 

NS genes of H4N8–DD viruses consistently formed a monophyletic clade with those of 

the H7N8 turkey strains in phylogenetic trees (Figure 13, 

Time_scale_phylogenetic_trees_for_eight_gene_segments.pdf). The PB2 gene of H4N8–

DD viruses isolated in 2014 and that of the H7N8 turkey strains, and PB1 gene of H4N8–

DD viruses isolated in 2012 and 2014 and that of the H7N8 turkey strains were 

phylogenetically closely related 

(Time_scale_phylogenetic_trees_for_eight_gene_segments.pdf). 
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Figure 15 Phylogenetic network of H7N8 viruses detected in Indiana turkeys in red 
font. 

The network was reconstructed by concatenating sequences of six internal gene segments 
for each virus strain. Strain names are color-coded with the host group colors of Figure 
13. The highly pathogenic H7N8 strain detected in Indiana turkey is marked with an 
asterisk. H4N8 influenza A viruses isolated from diving ducks in 2011, 2012, and 2014 
are indicated by purple, blue, and green shade, respectively. Host species are: AGWT 
(american green winged teal), BUFF (bufflehead), BWTE (blue winged teal), COGO 
(common goldeneye), GRSC (greater scaup), LESC (lesser scaup), MALL (mallard), 
NOSH (northern shoveler), TK (turkey), and WODU (wood duck). Geographic locations 
are: IL (Illinois), IN (Indiana), KY (Kentucky), LA (Louisiana), MN (Minnesota), OH 
(Ohio), TX (Texas), and WI (Wisconsin). 
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To better understand the contribution of H4N8–DD viruses to the generation of 

the H7N8 precursor virus, we assigned genotypes to H4N8 IAVs based on the results of 

phylogenetic analyses. We analyzed the temporal dynamics of gene constellations that 

possessed at least one gene segment that was assigned to the same cluster as a gene 

segment in the H7N8 turkey strains. Gene constellation A possessed three gene segments 

(NA, MP, and NS) that were of the same genotype as those in the H7N8 turkey strains; 

this constellation was first detected at the end of 2011 and persisted for the next three 

years (Figure 16). Gene constellation B possessed the same three H7N8–like gene 

segments as constellation A plus an H7N8–like PB1 gene segment; this constellation was 

first detected at the end of 2012 and continued to exist in H4N8–DD viruses isolated in 

2014. Gene constellation C possessed five H7N8–like gene segments (PB2, PB1, NA, 

MP, and NS) and was first detected in late 2014. The close genetic relationship between 

H4N8–DD viruses and the H7N8 HPAI turkey strain at these five gene segments was 

supported by high nucleotide sequence identities (>99.00%) (Table 6). Taken together, 

these results provide evidence that gene constellations of H4N8 IAVs isolated primarily 

from diving ducks contributed to the generation of a H7N8 precursor virus in wild birds. 

Furthermore, a relatively persistent gene constellation possessing H7N8–like gene 

segments emerged in or before 2011 and apparently acquired additional gene segments 

closely related to the H7N8 outbreak strain during 2011–2014. 
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IAVs From Diving Ducks Are The Probable Genetic Source of The H7N8 Virus in 
Indiana Turkeys. 

Our phylogenetic and genotyping analyses provided evidence that IAVs isolated 

from diving ducks may have contributed to the generation of the H7N8 virus that was 

detected in Indiana turkeys. Using discrete phylogeographic analyses, we sought to 

further understand if diving ducks were the most likely source of H7N8 turkey strains. 

Results showed significant diffusion pathways from diving ducks to domestic turkey 

flocks in Indiana for seven gene segments: transition with decisive support was observed 

for the NS gene segment; strongly supported transition was observed for the PB2, PB1, 

HA, and NA gene segments; and supported transition was observed for the PA and MP 

gene segments (Figure 17, Table 7, Phylogenetic_trees_for_eight_gene_segments.pdf). 

No significant transition for NP gene segment was observed between any wild bird 

species and Indiana turkeys (Figure 17, Table 7, 

Phylogenetic_trees_for_eight_gene_segments.pdf). In total, the resulting transition 

patterns suggested IAV gene flow from diving ducks to Indiana turkeys and provide 

evidence that IAVs from diving ducks were the most likely genetic source of the H7N8 

virus that was detected in turkeys in Indiana. 

To gain insight into the gene flow pattern of IAVs among various wild bird 

species, we examined the diffusion pathways among different host groups. Bidirectional 

transmission was observed between dabbling duck and diving duck, and between 

gull/tern and shorebird; and gene transmission from diving duck to goose/swan was also 

observed (Table 8), suggesting extensive mixing of IAVs between these bird species 

groups in wild birds. 
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Figure 17 Diffusion of influenza A virus between different host groups of wild birds 
and Indiana turkey. 
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Figure 17 (continued) 
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Figure 17 (continued) 

(a) – (h) are maximum clade credibility phylogenetic trees for eight gene segments. The 
trees are constructed on the basis of the maximum clade credibility phylogenetic trees 
shown in Phylogenetic_trees_for_eight_gene_segments.pdf. (I) summarizes the diffusion 
pathway of influenza A virus between diving duck and Indiana turkey. 
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Table 7 Diffusion pathway of influenza A virus between wild birds and Indian 
turkeys. 

Segment Host group Transition rate Indicator Bayes factor Support level 
PB2 Diving duck 0.70 0.82 24.12 Strong support 
PB1 Diving duck 0.57 0.73 14.39 Strong support 
PA Diving duck 0.73 0.65 9.99 Support 
HA Diving duck 0.93 0.80 24.81 Strong support 
NP No significant transition was observed 
NA Diving duck 0.44 0.92 37.89 Strong support 
MP Diving duck 0.68 0.55 3.91 Support 
NS Diving duck 0.35 1.00 1045.21 Decisive 
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H7N8 LPAI Virus Evolved Into An HPAI Strain In Turkeys 

We also investigated how the H7N8 virus evolved into a highly pathogenic form 

after its introduction into domestic turkeys. The cleavability of HA protein is considered 

a major determinant of pathogenicity, although the pathogenicity of IAVs is polygenic. 

We investigated the sequence in the cleavage region of the HA protein of H7N8 turkey 

strains. Indiana/16-001403-1 has a three basic amino acids (KRK) insert at the cleavage 

site that results in a protein sequence motif: PENPKKRKTRGLF (Figure 18). The other 

two H7N8 turkey strains, Indiana/16-001573-2 and Indiana/16-001574-7, have an 

identical and typical LPAI cleavage site with no insert. Analyses of H7 HPAI strains 

from previous outbreaks in the Americas identified multiple insertion patterns and 

insertions of six to ten amino acids (Figure 18). Comparison showed that the novel H7N8 

HPAI strain has a unique cleavage site different from earlier H7 HPAI strains in the 

Americas. 

Comparison of the genome of H7N8 HPAI strain and those of the two H7N8 

LPAI turkey strains identified five amino acid substitutions in five distinct proteins 

(Figure 19). Moreover, five amino acid substitutions in three different proteins were 

detected between the genome of three H7N8 turkey strains and that of 

Kentucky/AH0012935 (Figure 19). The profile of three amino acid positions (E105K, 

F260L, and E278K [H3 numbering]; 95, 251, and 269 [H7 numbering]) in the HA1 

protein were analyzed for all H7 IAVs isolated from wild and domestic birds in the 

influenza database. It is interesting that amino acid K at position 278 [H3 numbering] in 

the HA1 protein was observed in one poultry–origin isolate, 

A/chicken/Guanajuato/07437-15/2015(H7N3), which presents multiple basic amino acids 
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in the HA protein cleavage region. Amino acid K was also observed in six H7N3 HPAI 

strains isolated during an outbreak in Pakistan in 2004. These amino acid substitutions 

were potentially linked to the host adaptation of H7N8 viruses from wild waterfowl to 

turkey and evolution from low pathogenic to highly pathogenic form.  

 

Figure 18 Insertion patterns in the HA cleavage region of the H7 viruses detected in 
Indiana turkeys and those from four previous outbreaks in the Americas. 

The H7N8 viruses detected in Indiana turkeys are indicated in red, highly pathogenic 
avian influenza viruses isolated from previous outbreaks are indicated in green. Wild 
bird-origin influenza A viruses containing HA gene segment that is most closely related 
to outbreak strains are indicated in black. Insert of basic amino acids are color-coded 
accordingly. Host species are: BWTE (blue winged teal), CITE (cinnamon teal), CK 
(chicken), GADW (gadwall), LESC (lesser scaup), REDH (redhead), and TK (turkey). 
Geographic locations are: AZ (Arizona), BC (British Columbia), IN (Indiana), KY 
(Kentucky), OH (Ohio), SK (Saskatchewan), and TX (Texas). 
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Figure 19 Amino acid substitutions among eight gene segments of the H7N8 strains 
detected in Indiana turkey. 

The position of amino acid substitution between Kentucky/AH0012935 and the H7N8 
turkey strains are shown in bold, and other positions represent amino acid substitutions 
between the highly pathogenic avian influenza H7N8 strain and two low pathogenic 
avian influenza H7N8 strains associated with the outbreak of disease in Indiana turkeys. 
Amino acids are colored-coded on the basis of Rasmol coloring scheme in CLC sequence 
Viewer 7, and colors represent the different properties of amino acids. Host species are:  
LESC (lesser scaup) and TK (turkey). Geographic locations are: IN (Indiana) and KY 
(Kentucky). 

Discussion 

Introduction of IAVs from wild birds to domestic poultry presents a continuous 

threat to livestock health. In this study, we provided evidence that the H7N8 virus 

associated with the outbreak of disease in Indiana turkeys was generated through a series 

of genetic events likely occurring in wild birds and subsequently introduced into an 

Indiana turkey flock, where the virus evolved into a highly pathogenic form. 

We propose one possible evolutionary model leading to the generation of H7N8 

HPAI virus in Indiana turkeys on the basis of available evidence and emphasize that other 

models cannot be excluded. The H7N8 precursor virus may have been generated in wild 

birds through two phase sequential reassortment events (Figure 20). The first phase of 

reassortment may have occurred between H4N8–DD viruses and other IAVs circulating 

in North American wild birds during 2011–2014, generating 
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A/Bufflehead/Illinois/14OS3609/2014–like virus, possessing five H7N8–like gene 

segments (PB2, PB1, NA, MP, and NS), in diving ducks. In the second phase, further 

reassortment between A/Bufflehead/Illinois/14OS3609/2014–like virus and locally 

circulating IAVs in wild birds that have H7N8–like PA, HA, and NP gene segments lead 

to the generation of H7N8 precursor virus. Although the direct predecessor virus of the 

H7N8 turkey viruses could not be identified, we identified one IAV strain that possess six 

gene segments most closely related to that of the H7N8 HPAI virus, with nucleotide 

sequence identity ≥99.00%, in a diving duck sampled in Kentucky. IAVs that are most 

closely related to the H7N8 turkey strains, including Kentucky/AH0012935 and H4N8–

DD isolates, were mainly recovered from samples collected in Kentucky, Wisconsin, 

Illinois, Ohio, and Louisiana, all of which are included within the Mississippi flyway. In 

addition, sample collection sites for IAVs isolated from diving ducks included locations 

within all four major flyways of North America (Figure 21). Thus, we predict that the 

reassortment events leading to the generation of H7N8 precursor viruses likely occurred 

within the Mississippi flyway. Regarding the time of introduction of H7N8 virus to 

Indiana turkeys, we observed that the TMRCAs for three H7N8 turkey strains among 

seven of eight gene segments were summer and fall of 2015. In North America, 

waterfowl generally begin staging for autumn migration in July and August. Southern 

migration begins as early as August for blue-winged teal and for most waterfowl in late 

September, October, and early November. It was likely that waterfowl, including diving 

ducks, may have carried the H7N8 precursor virus during their southern migration and 

introduced this virus to Indiana turkeys through an unidentified interface between wild 

waterfowl and domestic poultry. After introduction to Indiana turkeys, H7N8 LPAI virus 
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evolved into highly pathogenic form through acquisition of three basic amino acids 

(KRK) in the cleavage region of the HA protein.   
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Figure 21 Statistics of influenza A viruses isolated from wild and domestic birds in the 
Americas. 

(a) Distribution of 8,845 influenza A virus strains isolated from wild and domestic birds 
in the Americas among different bird groups.  (b) Distribution of 133 influenza A virus 
strains isolated from American diving ducks among four bird migratory flyways and 
South America. (c) Distribution of 133 influenza A virus strains isolated from American 
diving ducks among different sampling years. 

Worldwide, LPAI viruses have been recovered from at least 105 wild bird species 

representing 26 different taxonomic families (33). Most of the 26 families are in the 

Order Anseriformes (including ducks, geese, and swans), followed by the Order 

Charadriiformes (including shorebirds and gulls); both are considered major natural 

reservoirs for IAVs (4). Among these bird species, shorebirds and gulls were previously 

suggested to be the source of the precursor of H5 and H7 HPAI viruses in North America 
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(225). A more recent study indicated that the precursors of H7N3 HPAI viruses in the 

Americas most likely originated from wild waterfowl, particularly dabbling ducks (194). 

In Eurasia, precursors of H7 HPAI viruses were generally found in dabbling ducks (195). 

Our findings add to the knowledge supporting that introduction of IAVs from wild birds 

plays an important role in the emergence of IAVs in domestic poultry. This study differs 

from previous work, though, in providing evidence that diving ducks may also contribute 

to the emergence of a HPAI strain as compared to dabbling ducks, shorebirds and gulls, 

and other bird species. Diving ducks appeared to have contributed five gene segments 

(PB2, PB1, NA, MP, and NS) to the novel H7N8 virus, may have harbored the H7N8 

LPAI precursor virus; however, the mechanism of exposure to Indiana turkeys remains 

unclear. The behavior of diving ducks may contribute to the long-term perpetuation of 

specific IAV genes or strains. Compared with dabbling ducks and many other birds, 

diving ducks utilize open water habitats that can include deeper water. It has been shown 

that IAVs may remain infectious in water for several months (41), but infectivity is 

adversely affected by repeated freeze-thaw cycles that would be more likely to occur at 

the shallower water utilized by dabbling ducks (226). In aquatic habitats highly 

contaminated by waterfowl feces, deeper water habitats that undergo limited or no freeze-

thaw cycles could also increase the risk for IAV co-infection, which could lead to virus 

reassortment and the generation of novel IAV strains as occurred with the H7N8 

precursor viruses. 

Mutation and reassortment have been two major mechanisms for IAVs to 

maintain circulation and expand host ranges. Reassortment events have been well 

documented for IAVs that infect humans, swine, equine, canines, and wild and domestic 
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birds. Persistence of a gene constellation has been shown to be associated with 

emergence of novel IAV strains that infect mammals. The existence of triple-reassortant 

internal gene constellations has been well established in multiple subtypes of IAVs that 

infect swine, and such constellations contributed to the genesis of the pandemic influenza 

A(H1N1) pdm09 virus (95). This internal gene constellation was suggested to possess a 

selective advantage over other strains (227). In contrast, IAVs that infect wild birds 

generally form diverse and transient genotypes through reassortment of functionally 

equivalent gene segments (48). Specific studies devoted to H7 IAVs in wild birds 

inhabiting North America and Eurasia found similar patterns (196, 219). In addition, 

extensive gene flow between IAVs in North American wild birds could further facilitate 

genetic diversity, although the migratory flyway and geographic distance may impose 

short-term restrictions on gene flow (228, 229). We observed that as many as five H7N8–

like gene segments (PB2, PB1, NA, MP, and NS) formed a relatively persistent gene 

constellation in H4N8 IAVs isolated from diving ducks. This finding suggests that 

reassortment between IAVs in wild birds may not be random: some gene segments may 

be more likely to form specific linkages within the context of diverse and transient 

genotypes. Alternatively, reassortment may be restricted in some groups of birds, like 

diving ducks, if prevalence and the probability of infection with two or more viruses is 

unlikely. The significance of the relatively persistent gene constellation, within the 

context of transient genotypes of IAVs in wild birds, observed in this study is not known. 

Influenza surveillance in wild birds is critical for understanding the natural history 

of IAVs and assessing the ancestry of IAVs infecting domestic poultry, however, the 

existing surveillance system in wild birds could have led to considerable bias toward bird 
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species that are present in large numbers in nature or that are easily caught (33). Diving 

ducks are underrepresented in both historic and current IAV surveillance. We 

investigated the host origin of genomic sequences deposited in the Influenza Research 

Database (220) and found that diving duck-origin strains comprise around 1.50% of the 

total number of IAV strains isolated from wild and domestic birds in the Americas 

(Figure 21). Among the 441 IAV strains that we sequenced in this study, only six 

originated from diving ducks (Figure 11). In addition, data from a large scale surveillance 

program in wild birds throughout the United States showed that, among the 197,885 

samples collected from over 200 wild bird species (2007–2011), diving ducks accounted 

for only 7.72% of all samples collected and 3.58% of the IAV positive samples 

determined by M gene based rRT-PCR; dabbling ducks accounted for 62.73% of the 

samples collected and 86.44% of the IAV positive samples (230). Although data from the 

same study showed that the IAV positive rate for diving ducks was 5.30% compared to 

15.80% for dabbling ducks, our study highlights the contribution of diving ducks to the 

emergence of the novel H7N8 virus and suggests that diving ducks may serve as a 

potentially unique IAV reservoir or uniquely contribute to the maintenance, 

diversification, and transmission of IAVs in wild birds. Thus, we recommend additional 

surveillance sampling of diving ducks and other bird species of specific ecological 

significance for IAVs, but acknowledge the difficulty in obtaining these samples from 

hunter harvested birds since dabblers are usually the preferred bird species of hunters. 

Moreover, we observed a relatively persistent gene constellation that may be associated 

with the emergence of the novel H7N8 virus. Genome sequencing and characterization of 

gene constellation of IAVs in wild birds could serve as a valuable component of a 
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successful surveillance strategy. The genomes of 441 wild bird–origin IAVs were 

sequenced in a collaborative effort in this study. This large number of IAV isolates and 

sequences enabled us to conduct detailed evolutionary analyses and revealed a few key 

aspects regarding the evolutionary pathway leading to the novel H7N8 virus. The 

experience from this study demonstrates the need for a coordinated, systematic, and 

collaborative approach to active surveillance in wild birds. 

In summary, our investigation provides information on the putative viral 

ancestors, possible evolutionary pathways, and probable host species involved in the 

emergence of a novel H7N8 virus that caused outbreaks among turkey flocks in Indiana 

during 2016. Our findings indicate that diving ducks contributed to the emergence of the 

novel H7N8 virus and may contribute to the maintenance, diversification, and 

transmission of IAVs in wild birds. The repeated introduction of IAVs into domestic 

poultry from wild birds highlights important gaps in existing biosecurity systems and 

provides evidence that surveillance in wild birds can be useful for understanding possible 

evolutionary pathways of emergence. 
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THE ANTIGENIC DIVERSITY AND GENETIC EVOLUTION OF 

CONTEMPORARY H7 AIVS FROM NORTH AMERICA  

DURING 1971 to 2012 

H7 AIVs have caused at least 500 confirmed human infections since 2003 and 

culling of more than 75 million birds in recent years. Vaccine could serve as a valuable 

component in a successful AIV control strategy, and antigenic match between vaccine 

seed strain and circulating viral strains is one of the keys to a successful vaccination 

program. However, limited data is available for the antigenic diversity of contemporary 

H7 AIVs from North America. In this chapter, we antigenically and genetically 

characterized 93 AIV isolates from North America (85 from wild birds [1976–2010], 

seven from domestic poultry [1971–2012], and one from a seal [1980]). The 

hemagglutinin genes of these H7 viruses are separated from those from Eurasia. Gradual 

accumulation of nucleotide and amino acid substitutions was observed in the 

hemagglutinin of H7 AIVs isolated from wild and domestic birds. Genotype 

characterization suggested that H7 AIVs circulating in North American wild birds form 

diverse and transient internal gene constellations. Serologic analyses showed that the 93 

isolates cross-reacted with each other to different extents. Antigenic cartography showed 

that the average antigenic distance among them was 1.14 units (standard deviation [SD], 

0.57 unit) and that antigenic diversity among the H7 isolates we tested was limited. Our 
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results suggest that the continuous genetic evolution has not led to significant antigenic 

diversity for H7 AIVs from North America. These findings add to our understanding of 

the natural history of IAVs and will inform public health decision-making regarding the 

threat these viruses pose to humans and poultry. 

Introduction 

H7 AIVs have been frequently reported to cause outbreaks in domestic poultry 

and humans. The first outbreak of HPAI H7 virus in Pakistan was reported in 1995, and 

the threat to domestic poultry has persisted in the region since then (231, 232). In 2003, a 

HPAI H7N7 outbreak in the Netherlands led to the death or culling of more than 

30,000,000 birds and 89 infections in humans, one of which was fatal (19, 233). In March 

2013, a LPAI H7N9 virus emerged in eastern China (177) and has become enzootic in the 

region (234). The virus causes asymptomatic infection in domestic poultry, including 

chickens and waterfowl, but high morbidity and mortality in human infections (235). 

Since the emergence of H7N9 virus, more than 500 laboratory-confirmed cases in human 

have been reported, of which more than 100 were fatal 

(http://www.who.int/influenza/human_animal_interface/influenza_h7n9/en/). 

Furthermore, epidemics caused by H7N1 and H7N3 AIVs were reported in Italy during 

1999–2004 (150, 189). H7 AIVs were also reported to cause outbreaks in domestic 

poultry in Australia (236), Germany (237), and the United Kingdom (238). In North 

America, H7N2 AIV was first identified in 1994 in the LPM system in the northeastern 

United States, and during 1997–2002 it was linked with outbreaks among poultry in 

Pennsylvania, Virginia, West Virginia, and North Carolina(129, 181). HPAI H7N3 
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viruses were responsible for outbreaks in poultry in Canada (in 2004 and 2007) and 

Mexico (in 2012) (61, 239, 240), and subsequently spilled over to humans (64, 241). 

The conventional strategy for controlling the spread of avian influenza outbreaks 

in domestic poultry involves enforcement of biosecurity measures, diagnostics and 

surveillance, and culling of infected birds. In addition, vaccination programs have been 

implemented in multiple countries to control H7 AIV outbreaks among domestic poultry. 

For example, in Italy, vaccine was used against H7N1 virus in 2000 and against H7N3 

virus in 2002; vaccines have been used in Pakistan since 1995 to control H7N3 virus; and 

in North America, vaccine was used against a 2003 H7N2 virus outbreak in Connecticut, 

United States, and against the on-going H7N3 virus outbreak in Mexico. Early experience 

showed that vaccine could serve as a valuable component in a successful AIV control 

strategy. 

IAVs evolve by two major mechanisms: mutation and reassortment. Point 

mutations within surface glycoproteins HA and NA can lead to a small antigenic change, 

so called antigenic drift. Reassortment refers to the exchange of individual gene segments 

or combinations of segments between IAVs during mixed infections in the same cell. The 

switch of HA and/or NA by reassortment can cause a large antigenic change, so called 

antigenic shift. Reassortment occurs frequently between IAVs, and it facilitates 

generation of epidemic and pandemic influenza strains. Both antigenic drift and antigenic 

shift allow IAVs to evade the herd immunity established from previous influenza 

infections or vaccination. 

Earlier studies have showed minor antigenic diversity for wild bird-origin H7 

AIVs from Eurasia (195, 196); however, limited data is available for antigenic diversity 
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of contemporary H7 AIVs from North America. Understanding the antigenic diversity of 

H7 AIVs circulating in North America will facilitate the detection of antigenic variants 

and development of effective strategies for disease prevention and control. In this 

chapter, we antigenically characterized 93 H7 AIVs derived from wild waterfowl, 

domestic poultry, and a seal; the isolates were collected across North America during 

1971–2012. The genomic sequences were analyzed to determine the genetic evolution 

dynamics of H7 AIVs in North America. 

Materials and Methods 

Ethics Statement 

All experiments involved in animals were approved by Institutional Animal Care 

& Use Committee, Mississippi State University (Project No. 13-090). All experiments 

were carried out in accordance with the approved guidelines. 

Viruses 

A total of 93 H7 isolates were included in the study (Table 9): 85 were derived 

from wild birds during 1976-2010, seven were derived from domestic poultry during 

1971-2012, and one was derived from a seal in 1980. Among these isolates, A/cinnamon 

teal/Mexico/2817/2006(H7N3) was the vaccine strain used during the vaccination 

campaign against HPAI H7N3 virus in Mexico in 2012, strain A/chicken/British 

Columbia/314514-2/2004(H7N3) was isolated from the outbreak in domestic poultry in 

Canada in 2004, and strain A/chicken/Jalisco/CPA-12283/2012(H7N3) was from the 

outbreak in Mexico in 2012. The wild bird-origin isolates represent those recovered from 

Canada, Mexico, and 28 states within the United States. They also represent the four 
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major bird migratory flyways in North America: the Atlantic, Central, Mississippi, and 

Pacific flyway (Figure 22). 

The isolates were propagated by using nine day old specific pathogen free chicken 

embryonated eggs; the eggs were inoculated and incubated for 72 hours at 37°C before 

the virus was harvested. Viruses were then aliquoted and stored at −80°C until use. 

Generation of Reference Antisera in Chicken 

A total of 15 H7 isolates were selected to generate reference antisera; the isolates 

were selected to maximize the representative subtype and species diversity and 

geographic and temporal coverage of the 93 isolates (Table 9). Three-week-old specific 

pathogen free chickens were used to produce antisera. Chickens were inoculated 

intranasally with 106 50% tissue culture infective doses of an H7 AIV isolate. If the sera 

titers were ≥ 1:160 at two weeks post inoculation, the sera were collected at three weeks 

post inoculation; if the viral titers were < 1:160 at two weeks post inoculation, the birds 

were re-inoculated intranasally with 106 50% tissue culture infective doses of the same 

H7 AIV isolate and the sera were collected at two weeks post re-inoculation. Blood was 

collected from the chickens’ heart four weeks after the first inoculation. Serum was 

separated from the erythrocytes after centrifugation at 2,000 rpm for ten minutes. All sera 

were aliquoted and stored at −80°C until use. 

HA and HI Assays 

Before performing the HI tests, we treated the chicken antisera with 100% packed 

chicken red blood cells to eliminate non-specific antigen reactions. The HA and HI 

assays were performed in accordance with World Organisation for Animal Health 
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guidelines. HI tests were carried out by using four hemagglutinin units and a 1% chicken 

red blood cells suspension. 
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Table 9 List of H7 AIVs isolated in North America that were subjected to antigenic 
characterization. 

Virus 
Date 
collected Flyway Subtype 

Isolates from wild birds    

A/American green-winged teal/Colorado/A00551331/2007a 10-Nov-07 Central H7N3 

A/northern shoveler/Utah/A00374996/2007 15-Dec-07 Pacific H7N3 

A/domestic duck/West Virginia/A00140912/2008 9-Jul-08 Atlantic H7N3 

A/domestic duck/West Virginia/A00140913/2008 9-Jul-08 Atlantic H7N3 

A/domestic duck/West Virginia/A00140915/2008 9-Jul-08 Atlantic H7N3 

A/mute swan/Rhode Island/A00325105/2008 6-Aug-08 Atlantic H7N3 

A/mute swan/Rhode Island/A00325108/2008 6-Aug-08 Atlantic H7N3 

A/mute swan/Rhode Island/A00325112/2008 6-Aug-08 Atlantic H7N3 

A/mute swan/Rhode Island/A00325114/2008 6-Aug-08 Atlantic H7N3 

A/mute swan/Rhode Island/A00325115/2008 6-Aug-08 Atlantic H7N3 

A/mute swan/Rhode Island/A00325117/2008 6-Aug-08 Atlantic H7N3 

A/mute swan/Rhode Island/A00325125/2008 6-Aug-08 Atlantic H7N3 

A/mute swan/Rhode Island/A00325129/2008 6-Aug-08 Atlantic H7N3 

A/mute swan/Rhode Island/A00325136/2008 6-Aug-08 Atlantic H7N3 

A/mallard/Wisconsin/A00465618/2008 5-Sep-08 Mississippi H7N3 

A/blue-winged teal/Missouri/A00624483/2008 8-Sep-08 Mississippi H7N3 

A/blue-winged teal/Missouri/A00624484/2008 8-Sep-08 Mississippi H7N3 

A/mallard/Iowa/A00558620/2008 18-Oct-08 Mississippi H7N3 

A/American green-winged teal/Colorado/A00660616/2008 9-Nov-08 Central H7N3 

A/mallard/South Dakota/A00649542/2008 19-Nov-08 Central H7N3 
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Table 9 (continued) 

Virus 
Date 
collected Flyway Subtype 

Isolates from wild birds    

 A/mallard/New Jersey/A00122457/2008 22-Nov-08 Atlantic H7N8 

 A/mallard/Kansas/A00523306/2008 25-Nov-08 Central H7N3 

 A/mallard/Indiana/A00142205/2008 26-Nov-08 Mississippi H7N3 

 A/northern shoveler/Nevada/A00505416/2008 6-Dec-08 Pacific H7N6 

 A/American green-winged 
 teal/Wyoming/A00230796/2008 

7-Dec-08 Central H7N3 

 A/bufflehead/Virginia/A00120022/2008 9-Dec-08 Atlantic H7N2 

 A/northern shoveler/Oregon/A00654616/2008 22-Dec-08 Pacific H7N3 

 A/northern shoveler/Mississippi/A00682947/2008 27-Dec-08 Mississippi H7N7 

 A/American green-winged teal/Utah/A00833077/2009 2-Jan-09 Pacific H7N3 

 A/American green-winged teal/Arizona/A00115994/2009 3-Jan-09 Pacific H7N3 

 A/American green-winged teal/Arizona/A00115995/2009 3-Jan-09 Pacific H7N3 

 A/American green-winged teal/Utah/A00831743/2009 3-Jan-09 Pacific H7N3 

 A/gadwall/Arizona/A00663934/2009 3-Jan-09 Pacific H7N7 

 A/northern shoveler/Mississippi/A00602284/2009 3-Jan-09 Mississippi H7N2,N7 

 A/northern shoveler/Utah/A00831758/2009 8-Jan-09 Pacific H7N3 

 A/American green-winged teal/Utah/A00654391/2009 9-Jan-09 Pacific H7N3 

 A/American green-winged teal/Utah/A00461135/2009 15-Jan-09 Pacific H7N1 

 A/American green-winged teal/Utah/A00461136/2009 15-Jan-09 Pacific H7N1 

 A/American green-winged teal/Utah/A00614935/2009 15-Jan-09 Pacific H7N3 

 A/mallard/Oklahoma/A00449368/2009 15-Jan-09 Central H7N3 
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Table 9 (continued) 

Virus 
Date 
collected Flyway Subtype 

Isolates from wild birds    

 A/mallard/Oklahoma/A00449455/2009 15-Jan-09 Central H7N3 

 A/northern shoveler/Utah/A00461133/2009 15-Jan-09 Pacific H7N4 

 A/northern shoveler/Utah/A00468752/2009 15-Jan-09 Pacific H7N3 

 A/American green-winged teal/Utah/A00468772/2009 16-Jan-09 Pacific H7N7 

 A/northern shoveler/Utah/A00468715/2009 16-Jan-09 Pacific H7N6 

 A/northern shoveler/Utah/A00468766/2009 16-Jan-09 Pacific H7N3 

 A/northern pintail/Texas/A00466052/2009 18-Jan-09 Central H7N3 

 A/ring-necked duck/Texas/A00766403/2009 19-Jan-09 Central H7N1 

 A/blue-winged teal/Louisiana/A00637297/2009 22-Jan-09 Mississippi H7N3 

A/American green-winged teal/Texas/A00604024/2009 3-Feb-09 Central H7N3 

A/American green-winged teal/Texas/A00604029/2009 3-Feb-09 Central H7N3 

A/American green-winged teal/Texas/A00604032/2009 3-Feb-09 Central H7N3 

A/American green-winged teal/Texas/A00604814/2009 3-Feb-09 Central H7N3 

A/blue-winged teal/Texas/A00605473/2009 13-Mar-09 Central H7N3 

A/blue-winged teal/Minnesota/A00137660/2009 27-Jul-09 Mississippi H7N3 

A/mallard/Montana/A00750842/2009 16-Sep-09 Central H7N3 

A/blue-winged teal/South Dakota/A00772794/2009 28-Sep-09 Central H7N7 

A/mallard/Michigan/A00869519/2009 14-Oct-09 Mississippi H7N3 

A/mallard/Nebraska/A00709657/2009 28-Nov-09 Central H7N3 

A/mallard/New York/A00723392/2009 12-Dec-09 Atlantic H7N3 

A/mallard/New York/A00723400/2009 12-Dec-09 Atlantic H7N4 
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Table 9 (continued) 

Virus 
Date 
collected Flyway Subtype 

Isolates from wild birds    

A/mallard/Oklahoma/A00749161/2009 12-Dec-09 Central H7N3 

A/mallard/Oklahoma/A00744383/2009 13-Dec-09 Central H7N3 

A/northern shoveler/Oklahoma/A00744384/2009 13-Dec-09 Central H7N3 

A/mallard/Illinois/A00325439/2009 18-Dec-09 Mississippi H7N3 

A/mallard/Illinois/A00755320/2009 18-Dec-09 Mississippi H7N3 

A/mallard/New Jersey/A00926089/2010 17-Feb-10 Atlantic H7N3 

A/American black duck/Delaware/A00870108/2010 18-Feb-10 Atlantic H7N3 

A/blue-winged teal/Texas/A00463679/2010 10-Mar-10 Central H7N3 

A/duck/Alberta/49/1976 1976  H7N3 

A/mallard/Ohio/421/1987 1987  H7N8 

A/pintail/MN/423/1999 1999  H7N3 

A/laughing gull/NJ/2455/2000 2000  H7N3 

A/ruddy turnstone/DE/1538/2000 2000  H7N9 

A/ruddy turnstone/DE/892/2006 2002  H7N3 

A/cinnamon teal/Mexico/2817/2006 2006  H7N3 

A/ruddy turnstone/NJ/207/2006  2006  H7N3 

Isolates from domestic poultry    

A/turkey/Oregon/1971 1971  H7N3 

A/turkey/MN/38429/1988 1988  H7N9 

A/turkey/NY/4450-4/1994 1994  H7N2 

A/turkey/VA/SEP-67/2002 2002  H7N2 

A/chicken/CT/260413-2/2003 2003  H7N2 

A/chicken/British Columbia/314514-2/2004b 2004  H7N3 

A/chicken/Jalisco/CPA-12283/2012b 2012  H7N3 

Isolate from seal    

A/seal/MA/1/1980 1980  H7N7 
a Viruses used to generated reference antisera are in bold. 
b Highly pathogenic avian influenza virus. 
Isolates’ name was colored-coded according to their genetic clusters. Red indicates virus 
in cluster I, green indicates virus in cluster II, and blue indicates virus in cluster III. 
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Figure 22 Geographic distribution of H7 AIVs selected for antigenic characterization. 

The isolates represent strains from Canada, Mexico, and the United States. Triangles 
indicate viruses isolated from wild birds, dots indicate viruses isolated from domestic 
poultry, and the square indicates virus isolated from a seal. Map of North America with 
US States and Canadian Provinces by FreeVectorMaps.com, 
https://freevectormaps.com/world-maps/north-america/WRLD-NA-02-0003.
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Full Genome Sequencing 

Viral RNA was extracted from the allantoic fluid of specific pathogen free 

embryonated chicken eggs by using the QIAamp Viral RNA Kit (QIAGEN, Valencia, 

CA) according to the manufacturer’s instructions. The full-length cDNA for eight 

influenza gene segments was amplified by using a SuperScript One-Step RT-PCR kit 

(Invitrogen, Grand Island, NY) with influenza virus–specific primers (242). PCR 

products were separated by using agarose gel electrophoresis and purified by using a 

QIAquick Gel Purification Kit (QIAGEN). Amplified viral DNA products were 

quantitated by using a High Sensitivity DNA kit on an Agilent 2100 Bioanalyzer system 

(both from Agilent Technologies, Santa Clara, CA). An equal amount of each sample was 

used to prepare the sequencing library with the Illumina Nextera DNA Sample 

Preparation Kit (Illumina, San Diego, CA, USA). Library samples were further 

quantitated, normalized, and pooled together. Pooled library samples were sequenced by 

using a MiSeq Reagent Kit v2 (500 cycles) on a MiSeq sequencer (Illumina); the 

sequencing protocol suggested by the manufacturer was followed. When any gene 

segment presented more than one copy of sequence, PCR was performed with 

specifically designed primer to confirm the existence of multiple copies of sequences. 

These sequences were excluded from further analysis. Sequences obtained in this study 

are available in GenBank under accession numbers KU289738 to KU290331. 

Genomic Assembly 

Genomic assembly was conducted with the in-house influenza genome assembly 

pipeline, which integrates quality trimming by Trimmomatic (198), de novo assembly by 

Velvet (200), reference search by BLAST (201), and mapping by Bowtie v2.0 (199). In 



www.manaraa.com

 

114 

brief, quality trimming was first conducted by using Trimmomatic, which trims bases 

from both ends of each read if the quality falls below 30 and clips reads if the average 

quality drops below 28 (in a sliding window of ten bases). Reads less than 100 

nucleotides in length were not included in the downstream analyses. The quality-filtered 

reads were then de novo assembled in Velvet to build long contigs, and resulting contigs 

were searched against the Influenza Virus Resource (243) by using BLAST to select the 

reference sequence. Quality-filtered reads were then mapped to the reference sequences 

by using Bowtie v2.0. Last, consensus sequences were generated with a minimum 10-

fold mapping coverage and supported by at least 90% of reads at a given position. The 

mapping profile was visualized by using the Integrative Genomics Viewer (244) and 

manually checked to correct potential assembly errors. 

Evolutionary Analysis 

Phylogenetic trees were inferred by using the maximum likelihood method 

implemented in RAxML v8.1.17 (245). A general time-reversible model of nucleotide 

substitution and a γ-distributed rate variation among sites was applied throughout the 

analysis. Sequence alignments were conducted by using MUSCLE v3.8 (222). 

To understand the evolutionary history of the H7 gene of AIVs isolated from 

North America, two rounds of phylogenetic analyses were conducted. In the first round, 

all genomic sequences of the H7 gene from AIVs were downloaded from the Influenza 

Virus Resource in March 2015. A total of 1,315 sequences were available after 

combining these database sequences with sequences recovered in this study. Two major 

lineages, North American and Eurasian, were identified from the topology of this 

preliminary phylogeny. Sequences falling into the North American lineage were kept, 
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and 19 sequences were selected to represent the Eurasian lineage. After that, 775 

sequences were retained. In the second round, phylogenetic analysis was conducted on 

the HA1 domain of these 775 nucleotide sequences for a clear comparison of the 

antigenic and genetic profiles. Topological robustness of the tree was evaluated by 1,000 

pseudo-replicates. 

Two rounds of phylogenetic analysis were conducted to assess the evolutionary 

history of the six internal gene segments of H7 AIVs circulating among wild birds in 

North America. In the first round, 8,545 genomic sequences from 1,030 complete 

genomes of H7 AIVs were downloaded from the Influenza Virus Resource. When 

multiple copies of genomic sequences were present for one gene segment, the sequence 

corresponding to the maximal length was reserved. These database sequences were 

analyzed with complete genomes recovered in this study. A total of 1,098 complete 

genomes were retained, and phylogenetic tree was inferred for each gene segment. 

Topology of the phylogeny was supported by 100 pseudo-replicates. North American and 

Eurasian lineages were identified from the tree topology. In the second round of analysis, 

the phylogenetic tree was inferred for 316 complete genomes corresponding to wild bird–

origin isolates in the North American NA-WB lineage. Topology of the phylogeny was 

supported by 1,000 pseudo-replicates. Genotypes were defined on the basis of the 

phylogenetic tree of each gene segment. A monophyletic clade was identified by two 

criteria: (1) it was supported by a bootstrap value above 60, and (2) all sequences in the 

clade had an average genetic distance greater than 95%. 

The extent of reassortment among the internal gene segments was determined on 

the basis of the six gene segment phylogenetic trees for viruses in the NA-WB lineage. A 
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maximum likelihood method was implemented to measure the congruence among these 

trees. Each gene segment tree was fitted to six gene data sets in turn, and the log 

likelihood value was obtained after optimizing model parameters and branch lengths. The 

similarity in topology among six gene trees corresponding to the same dataset was 

determined by the difference in log likelihood values. To put the distribution of log 

likelihood value in context, 100 random trees were generated for each gene dataset. Log 

likelihood values were obtained, using the same approach, after fitting them to the 

reference gene dataset. 

Inference of Amino Acid Sites under Positive Selection 

Selection pressure for the HA gene segment was investigated by using codon 

substitution models implemented in the Codeml program of PAML v 4.8 (246). The site 

models were used, allowing the ratio of non-synonymous/synonymous substitution rates 

(dN/dS) to vary among sites. Four different models were used: M1a, M2a, M7, and M8. 

Likelihood ratio tests for two pairs of models (M2a versus M1a and M8 versus M7) were 

conducted according to instructions in the manual. In the test, twice the log likelihood 

difference between the alternative model and null model was calculated. Small p-values 

(<0.01) lead to rejection of the null models. If null models were rejected, then Bayes 

Empirical Bayes analysis was implemented for estimation of specific codons under 

positive selection. Before analysis, identical sequences and sequences with ambiguous 

positions were removed. The nucleotide sequences coding the HA1 protein were 

analyzed. 
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Molecular Dating 

Molecular dating was conducted by using the Bayesian Markov Chain Monte 

Carlo method implemented in BEAST v1.8.0 (223). A HKY85 nucleotide substitution 

model, Bayesian skyline coalescent tree prior, and relaxed uncorrelated lognormal clock 

model were applied. For each analysis, a chain length of 50 million steps was run and 

2,000 samples were generated. The results were analyzed in Tracer v1.6 

(http://tree.bio.ed.ac.uk/software/tracer/), and convergence was assessed with a cutoff of 

200 for the effective sample size. The mean nucleotide substitution rate and time to the 

most common ancestor were computed after 10% of the samples were removed as burn-

in, and the statistical uncertainty was evaluated by using the values of the 95% HPD. 

Construction of the Antigenic Cartography and Molecular Characterization 

Antigenic cartography was constructed on the basis of HI data by using 

AntigenMap (247). Each entry in the HI table was normalized by dividing the maximum 

HI value for the reference antiserum. Missing HI titers and those below the cutoff value 

for low reactors were analyzed by low-rank matrix completion. An HI titer of ten was 

used as the low-reactor cutoff in the HI assay. Antigenic distance between two antigens 

was defined as the Euclidean distance between the HI values of the two viruses against 

all the antisera. Each unit of the antigenic distance corresponded to a 2-fold change in HI 

titer. Multidimensional scaling was used to project viruses to a 2-dimensional map by 

minimizing the sum-squared error between map distance and antigenic distance. 

Antigenic distance was subjected to hierarchical clustering analysis implemented in R 

(https://www.r-project.org/) to determine the potential division of viruses. 
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To investigate the difference in antibody binding site within the HA sequences, 

the protein sequences of these isolates were aligned with the H3 protein sequences and 

the antibody binding sites were annotated based on those in H3N2 influenza A virus as 

shown previously (169). 135 amino acid positions corresponding to five antibody binding 

sites A, B, C, D, and E in the H3 protein were identified. 

Results 

H7 HA Genes are Genetically Diverse 

Phylogenetic analyses showed that HA gene of H7 AIVs was divided into two 

geographically dependent lineages: Eurasian and North American (Figure 23, 

Phylogenetic_tree_for_HA1_nucleotide_sequences_of_H7_AIVs.pdf). Sporadic 

intercontinental gene flow between these two genetic pools was observed. Five H7 

viruses isolated in North America fell into the Eurasian lineage, and at least two 

independent introductions (in 1992 and 1994) were identified. AIVs 

A/softbill/CA/33445-158/1992(H7N1) and A/softbill/California/33445-136/1992(H7N1) 

were most closely related to A/non-psittacine/England-Q/1985/89(H7N7), sharing 

nucleotide sequence identities of 96.3% and 96.4%, respectively. In addition, 

A/softbill/California/13907-21/1994(H7N1) and A/Pekin 

robin/California/30412/1994(H7N1) are closely related to a group of AIVs of the same 

subtype isolated from wild birds in the Netherlands, Singapore, and England in 1994; 

nucleotide sequence identities ranged from 97.8% to 99.4%. One H7 virus isolated in 

China, A/duck/Guangdong/1/1996(H7N3), was grouped with bird-origin viruses from 

North America and was genetically closely related to A/ruddy turnstone/Delaware 

Bay/135/1996(H7N3), sharing a nucleotide sequence identity of 99.4%. 
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Table 10 Sequence identity of HA1 protein of H7 AIVs from distinct genetic clusters 
from North America. 

Genetic cluster 
% nucleotide/amino acid identity with viruses in genetic cluster 
I II III 

I 94.0/96.8 88.0/90.4 89.4/94.9 
II  96.1/95.7 89.5/92.0 
III   95.6/98.0 

 

Three major genetic clusters were identified in the North American lineage. 

Cluster I comprised the viruses isolated from wild and domestic birds during the 1970s 

into the early 1990s. From the available data, a clear temporal division was observed 

around 1994: cluster II mainly comprised the domestic poultry-origin H7 viruses isolated 

during1994–2006, and cluster III comprised the viruses recovered from wild and 

domestic birds after 1993. The tree topology was supported by the sequence identities: 

the average shared identities between HA1 nucleotide sequences within these clusters 

were 94.0% (cluster I), 96.1% (cluster II), and 95.6% (cluster III), and the average 

identities between viruses from one cluster and another were 88.0% (clusters I and II), 

89.5% (clusters II and III), and 89.4% (clusters I and III) (Table 10). 

Cluster I was estimated to emerge around 1969 (Table 12), and it circulated in 

North America for 24 years before its extinction in 1993. This cluster included one 

isolate recovered from a seal in 1980. Subtype H7N2 was the predominant subtype in 

cluster II, and the H7N2 viruses were mainly isolated from the LPM system in the 

northeastern United States and from commercial poultry farms in four US states 

(Maryland, Pennsylvania, North Carolina, and Virginia). Cluster II was further divided 

into two clades: II-1 and II-2. Clade II-1 mainly consisted of viruses isolated during 

1994-1996, and clade II-2 consisted of viruses isolated during 1996-2006. A clear 
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molecular difference separated these two clades: a deletion of eight amino acids at 

positions 212–219 in the HA1 protein. Cluster II included A/New York/107/2003(H7N2), 

which infected a human with suspected exposure to poultry (202). A similar 8-amino acid 

deletion was also observed in the HA1 protein of this virus. 

Cluster III represents the contemporary genetic pool of H7 AIVs in North 

America, including viruses from wild birds and from outbreaks among domestic poultry. 

H7 viruses isolated during individual outbreaks among domestic poultry formed 

independent monophyletic clades in the phylogeny, suggesting that they originated from 

separate introductions from wild birds (194). Three of the H7 viruses evolved into HPAI 

viruses: A/chicken/Canada/314514-2/2005(H7N3), A/chicken/SK/HR-

00011/2007(H7N3), and A/chicken/Jalisco/CPA1/2012(H7N3). Another H7 introduction, 

A/chicken/Delaware/10851/2014(H7N7), did not evolve into an HPAI virus. 

Limited Antigenic Diversity among Tested H7 AIVs 

Serologic analyses showed that the antisera generated against 15 selected isolates 

cross-reacted with the tested H7 isolates to different extents (Table 11, Table 13). 

Antigenic cartography showed no clear division of these isolates (Figure 23). The 

average antigenic distance among these isolates was 1.14 units (SD, 0.57 unit), and each 

unit represented a 2-fold change in HI titer. The hierarchical clustering method grouped 

these viruses into one cluster at a distance of 1.46 units, except for one outlier, 

A/laughing gull/NJ/2455/2000(H7N3). The average distance from the outlier to the 

remaining isolates was 2.01 units. Viruses from three distinct genetic clusters were 

grouped in this antigenic cluster; no clear correlation between the genetic diversity and 

antigenic property was observed (Figure 23). 



www.manaraa.com

 

 

121  

Ta
bl

e 
11

 
C

ro
ss

-H
I d

at
a 

ob
ta

in
ed

 fo
r t

es
tin

g 
H

7 
av

ia
n 

in
flu

en
za

 v
iru

se
s a

ga
in

st
 re

pr
es

en
ta

tiv
e 

ch
ic

ke
n 

se
ra

. T
he

 h
om

ol
og

ou
s 

tit
er

s w
er

e 
un

de
rli

ne
d.

 

V
ir

us
 

T
ite

r 
to

 c
hi

ck
en

 a
nt

is
er

um
 

B
U

FF
1

20
02

2 
M

A
L

L
1

22
45

7 
M

A
L

L
4

65
61

8 
A

G
W

T
55

13
31

 
A

B
D

U
8

70
10

8 
M

A
L

L
7

50
84

2 
M

A
L

L
7

09
65

7 
A

G
W

T
11

59
95

 
M

A
L

L
5

58
62

0 
A

/b
uf

fle
he

ad
/V

irg
in

ia
/A

00
12

00
22

/2
00

8 
80

 
80

 
80

 
16

0 
32

0 
80

 
80

 
80

 
80

 
A

/m
al

la
rd

/N
ew

 Je
rs

ey
/A

00
12

24
57

/2
00

8 
80

 
80

 
80

 
80

 
16

0 
80

 
40

 
20

 
80

 
A

/m
al

la
rd

/W
is

co
ns

in
/A

00
46

56
18

/2
00

8 
80

 
16

0 
16

0 
16

0 
16

0 
16

0 
40

 
40

 
80

 
A

/A
m

er
ic

an
 g

re
en

-w
in

ge
d 

te
al

/C
ol

or
ad

o/
A

00
55

13
31

/2
00

7 
80

 
16

0 
80

 
80

 
16

0 
80

 
40

 
20

 
40

 
A

/A
m

er
ic

an
 b

la
ck

 d
uc

k/
D

el
aw

ar
e/

A
00

87
01

08
/2

01
0 

80
 

80
 

80
 

16
0 

16
0 

80
 

80
 

80
 

16
0 

A
/m

al
la

rd
/M

on
ta

na
/A

00
75

08
42

/2
00

9 
16

0 
16

0 
32

0 
32

0 
32

0 
32

0 
16

0 
16

0 
16

0 
A

/m
al

la
rd

/N
eb

ra
sk

a/
A

00
70

96
57

/2
00

9 
80

 
32

0 
80

 
80

 
16

0 
80

 
16

0 
16

0 
80

 
A

/A
m

er
ic

an
 g

re
en

-w
in

ge
d 

te
al

/A
riz

on
a/

A
00

11
59

95
/2

00
9 

20
 

80
 

40
 

40
 

80
 

40
 

40
 

40
 

80
 

A
/m

al
la

rd
/Io

w
a/

A
00

55
86

20
/2

00
8 

20
 

80
 

40
 

40
 

40
 

40
 

40
 

20
 

40
 

A
/m

al
la

rd
/In

di
an

a/
A

00
14

22
05

/2
00

8 
16

0 
16

0 
16

0 
16

0 
16

0 
16

0 
16

0 
16

0 
40

 
A

/A
m

er
ic

an
 g

re
en

 w
in

ge
d 

te
al

/C
ol

or
ad

o/
A

00
66

06
16

/2
00

8 
40

 
16

0 
40

 
80

 
16

0 
40

 
40

 
40

 
40

 
A

/A
m

er
ic

an
 g

re
en

-w
in

ge
d 

te
al

/U
ta

h/
A

00
46

11
36

/2
00

9 
20

 
16

0 
16

0 
16

0 
16

0 
40

 
40

 
40

 
40

 
A

/b
lu

e 
w

in
ge

d 
te

al
/M

is
so

ur
i/A

00
62

44
84

/2
00

8 
16

0 
16

0 
16

0 
16

0 
16

0 
16

0 
16

0 
16

0 
80

 
A

/ri
ng

-n
ec

ke
d 

du
ck

/T
ex

as
/A

00
76

64
03

/2
00

9 
40

 
16

0 
80

 
80

 
16

0 
80

 
40

 
40

 
40

 
A

/b
lu

e-
w

in
ge

d 
te

al
/S

ou
th

 D
ak

ot
a/

A
00

77
27

94
/2

00
9 

16
0 

64
0 

32
0 

32
0 

32
0 

32
0 

32
0 

32
0 

64
0 

A
/s

ea
l/M

A
/1

/1
98

0 
40

 
16

0 
80

 
16

0 
80

 
40

 
40

 
40

 
80

 
A

/c
hi

ck
en

/C
T/

26
04

13
-2

/2
00

3 
40

 
40

 
40

 
80

 
40

 
40

 
20

 
20

 
40

 
A

/c
hi

ck
en

/B
rit

is
h 

C
ol

um
bi

a/
31

45
14

-2
/2

00
4 

80
 

16
0 

16
0 

16
0 

16
0 

16
0 

80
 

16
0 

16
0 

A
/tu

rk
ey

/O
re

go
n/

19
71

 
16

0 
32

0 
32

0 
64

0 
64

0 
16

0 
16

0 
32

0 
32

0 
A

/tu
rk

ey
/M

N
/3

84
29

/1
98

8 
40

 
40

 
80

 
80

 
80

 
40

 
40

 
40

 
40

 
A

/c
hi

ck
en

/J
al

is
co

/C
PA

-1
22

83
/2

01
2 

40
 

40
 

80
 

80
 

80
 

40
 

40
 

40
 

40
 

A
/tu

rk
ey

/V
A

/S
EP

-6
7/

20
02

 
40

 
40

 
80

 
80

 
80

 
80

 
80

 
80

 
80

 
A

/tu
rk

ey
/N

Y
/4

45
0-

4/
19

94
 

80
 

80
 

80
 

16
0 

80
 

80
 

80
 

40
 

80
 

A
/d

uc
k/

A
lb

er
ta

/4
9/

19
76

 
80

 
32

0 
16

0 
16

0 
16

0 
16

0 
16

0 
80

 
32

0 
A

/p
in

ta
il/

M
N

/4
23

/1
99

9 
80

 
16

0 
32

0 
64

0 
32

0 
16

0 
80

 
80

 
32

0 
A

/la
ug

hi
ng

 g
ul

l/N
J/

24
55

/2
00

0 
10

 
10

 
32

0 
64

0 
32

0 
16

0 
32

0 
16

0 
32

0 
A

/ru
dd

y 
tu

rn
st

on
e/

D
E/

15
38

/2
00

0 
40

 
80

 
80

 
80

 
80

 
40

 
40

 
80

 
16

0 
A

/m
al

la
rd

/O
hi

o/
42

1/
19

87
 

40
 

16
0 

80
 

80
 

80
 

40
 

40
 

40
 

80
 

A
/c

in
na

m
on

 te
al

/M
ex

ic
o/

28
17

/2
00

6 
80

 
16

0 
32

0 
32

0 
32

0 
16

0 
16

0 
16

0 
32

0 
A

/ru
dd

y 
tu

rn
st

on
e/

D
E/

89
2/

20
06

 
20

 
40

 
40

 
40

 
80

 
20

 
20

 
20

 
40

 
A

/ru
dd

y 
tu

rn
st

on
e/

N
J/2

07
/0

6 
 

20
 

40
 

40
 

40
 

40
 

40
 

20
 

20
 

40
 

A
/A

m
er

ic
an

 g
re

en
-w

in
ge

d 
te

al
/A

riz
on

a/
A

00
11

59
94

/2
00

9 
40

 
80

 
80

 
16

0 
80

 
80

 
80

 
40

 
80

 
A

/b
lu

e-
w

in
ge

d 
te

al
/M

in
ne

so
ta

/A
00

13
76

60
/2

00
9 

80
 

16
0 

80
 

80
 

80
 

80
 

80
 

40
 

32
0 



www.manaraa.com

 

 

122  

Ta
bl

e 
11

 (c
on

tin
ue

d)
 

A
/d

om
es

tic
 d

uc
k/

W
es

t V
irg

in
ia

/A
00

14
09

12
/2

00
8 

40
 

80
 

80
 

80
 

80
 

40
 

16
0 

20
 

40
 

A
/d

om
es

tic
 d

uc
k/

W
es

t V
irg

in
ia

/A
00

14
09

13
/2

00
8 

80
 

80
 

80
 

80
 

80
 

80
 

40
 

40
 

40
 

A
/d

om
es

tic
 d

uc
k/

W
es

t V
irg

in
ia

/A
00

14
09

15
/2

00
8 

40
 

80
 

80
 

80
 

80
 

80
 

40
 

20
 

40
 

A
/A

m
er

ic
an

 g
re

en
-w

in
ge

d 
te

al
/W

yo
m

in
g/

A
00

23
07

96
/2

00
8 

40
 

80
 

80
 

80
 

80
 

80
 

40
 

40
 

80
 

A
/m

ut
e 

sw
an

/R
ho

de
 Is

la
nd

/A
00

32
51

05
/2

00
8 

16
0 

16
0 

16
0 

80
 

16
0 

40
 

40
 

40
 

40
 

A
/m

ut
e 

sw
an

/R
ho

de
 Is

la
nd

/A
00

32
51

08
/2

00
8 

40
 

80
 

40
 

40
 

40
 

20
 

20
 

20
 

20
 

A
/m

ut
e 

sw
an

/R
ho

de
 Is

la
nd

/A
00

32
51

12
/2

00
8 

20
 

40
 

40
 

40
 

40
 

20
 

20
 

20
 

80
 

A
/m

ut
e 

sw
an

/R
ho

de
 Is

la
nd

/A
00

32
51

14
/2

00
8 

20
 

40
 

40
 

40
 

40
 

20
 

40
 

40
 

80
 

A
/m

ut
e 

sw
an

/R
ho

de
 Is

la
nd

/A
00

32
51

15
/2

00
8 

16
0 

16
0 

40
 

80
 

16
0 

40
 

40
 

40
 

40
 

A
/m

ut
e 

sw
an

/R
ho

de
 Is

la
nd

/A
00

32
51

17
/2

00
8 

40
 

80
 

40
 

40
 

40
 

20
 

20
 

20
 

20
 

A
/m

ut
e 

sw
an

/R
ho

de
 Is

la
nd

/A
00

32
51

25
/2

00
8 

40
 

80
 

40
 

40
 

80
 

40
 

40
 

20
 

40
 

A
/m

ut
e 

sw
an

/R
ho

de
 Is

la
nd

/A
00

32
51

29
/2

00
8 

20
 

40
 

40
 

40
 

40
 

20
 

20
 

20
 

40
 

A
/m

ut
e 

sw
an

/R
ho

de
 Is

la
nd

/A
00

32
51

36
/2

00
8 

40
 

80
 

80
 

80
 

80
 

40
 

40
 

20
 

40
 

A
/m

al
la

rd
/Il

lin
oi

s/
A

00
32

54
39

/2
00

9 
40

 
80

 
80

 
80

 
80

 
40

 
40

 
40

 
40

 
A

/n
or

th
er

n 
sh

ov
el

er
/U

ta
h/

A
00

37
49

96
/2

00
7 

80
 

16
0 

16
0 

16
0 

16
0 

16
0 

80
 

40
 

80
 

A
/m

al
la

rd
/O

kl
ah

om
a/

A
00

44
93

68
/2

00
9 

80
 

16
0 

80
 

80
 

80
 

40
 

40
 

40
 

80
 

A
/m

al
la

rd
/O

kl
ah

om
a/

A
00

44
94

55
/2

00
9 

16
 

20
 

20
 

20
 

20
 

20
 

20
 

20
 

20
 

A
/m

al
la

rd
/D

el
aw

ar
e/

A
00

45
62

71
/2

00
9 

80
 

32
0 

32
0 

32
0 

32
0 

16
0 

80
 

80
 

16
0 

A
/n

or
th

er
n 

sh
ov

el
er

/U
ta

h/
A

00
46

11
33

/2
00

9 
80

 
80

 
80

 
80

 
80

 
80

 
80

 
80

 
80

 
A

/A
m

er
ic

an
 g

re
en

-w
in

ge
d 

te
al

/U
ta

h/
A

00
46

11
35

/2
00

9 
80

 
80

 
80

 
80

 
80

 
80

 
80

 
80

 
80

 
A

/b
lu

e-
w

in
ge

d 
te

al
/T

ex
as

/A
00

46
36

79
/2

01
0 

80
 

32
0 

16
0 

16
0 

16
0 

80
 

80
 

40
 

16
0 

A
/n

or
th

er
n 

pi
nt

ai
l/T

ex
as

/A
00

46
60

52
/2

00
9 

40
 

80
 

40
 

80
 

16
0 

40
 

40
 

20
 

40
 

A
/A

m
er

ic
an

 g
re

en
-w

in
ge

d 
te

al
/M

is
si

ss
ip

pi
/A

00
46

85
14

/2
00

9 
16

0 
16

0 
32

0 
32

0 
32

0 
16

0 
32

0 
16

0 
16

0 
A

/n
or

th
er

n 
sh

ov
el

er
/U

ta
h/

A
00

46
87

15
/2

00
9 

20
 

20
 

20
 

20
 

40
 

20
 

20
 

20
 

40
 

A
/n

or
th

er
n 

sh
ov

el
er

/U
ta

h/
A

00
46

87
52

/2
00

9 
80

 
80

 
80

 
80

 
80

 
80

 
80

 
80

 
80

 
A

/n
or

th
er

n 
sh

ov
el

er
/U

ta
h/

A
00

46
87

66
/2

00
9 

80
 

16
0 

80
 

80
 

16
0 

80
 

40
 

40
 

20
 

A
/A

m
er

ic
an

 g
re

en
-w

in
ge

d 
te

al
/U

ta
h/

A
00

46
87

72
/2

00
9 

40
 

80
 

80
 

80
 

80
 

40
 

40
 

40
 

16
0 

A
/n

or
th

er
n 

sh
ov

el
er

/N
ev

ad
a/

A
00

50
54

16
/2

00
8 

40
 

80
 

80
 

80
 

80
 

40
 

40
 

80
 

40
 

A
/m

al
la

rd
/K

an
sa

s/
A

00
52

33
06

/2
00

8 
80

 
16

0 
80

 
16

0 
16

0 
80

 
40

 
40

 
40

 
A

/b
lu

e-
w

in
ge

d 
te

al
/L

ou
is

ia
na

/A
00

55
72

06
/2

00
9 

16
0 

16
0 

16
0 

16
0 

16
0 

16
0 

40
 

80
 

16
0 

A
/n

or
th

er
n 

sh
ov

el
er

/L
ou

is
ia

na
/A

00
55

73
21

/2
00

9 
40

 
80

 
40

 
40

 
40

 
40

 
40

 
20

 
32

0 
A

/A
m

er
ic

an
 g

re
en

-w
in

ge
d 

te
al

/T
ex

as
/A

00
58

66
49

/2
00

9 
40

 
80

 
80

 
80

 
80

 
40

 
40

 
40

 
20

 
A

/n
or

th
er

n 
sh

ov
el

er
/M

is
si

ss
ip

pi
/A

00
60

22
84

/2
00

9 
16

0 
64

0 
32

0 
64

0 
64

0 
16

0 
32

0 
16

0 
16

0 
A

/A
m

er
ic

an
 g

re
en

-w
in

ge
d 

te
al

/T
ex

as
/A

00
60

40
24

/2
00

9 
80

 
16

0 
16

0 
16

0 
16

0 
80

 
80

 
40

 
40

 
A

/A
m

er
ic

an
 g

re
en

-w
in

ge
d 

te
al

/T
ex

as
/A

00
60

40
29

/2
00

9 
40

 
80

 
80

 
80

 
80

 
40

 
40

 
40

 
40

 
A

/A
m

er
ic

an
 g

re
en

-w
in

ge
d 

te
al

/T
ex

as
/A

00
60

40
32

/2
00

9 
32

0 
16

0 
32

0 
32

0 
32

0 
16

0 
16

0 
80

 
32

0 
A

/A
m

er
ic

an
 g

re
en

-w
in

ge
d 

te
al

/T
ex

as
/A

00
60

48
14

/2
00

9 
16

0 
32

0 
16

0 
32

0 
16

0 
16

0 
80

 
80

 
32

0 
A

/b
lu

e-
w

in
ge

d 
te

al
/T

ex
as

/A
00

60
54

73
/2

00
9 

20
 

80
 

40
 

40
 

40
 

20
 

20
 

20
 

20
 

A
/A

m
er

ic
an

 g
re

en
-w

in
ge

d 
te

al
/U

ta
h/

A
00

61
49

35
/2

00
9 

16
0 

32
0 

16
0 

16
0 

32
0 

16
0 

16
0 

16
0 

32
0 



www.manaraa.com

 

 

123  

Ta
bl

e 
11

 (c
on

tin
ue

d)
 

A
/b

lu
e-

w
in

ge
d 

te
al

/M
is

so
ur

i/A
00

62
44

83
/2

00
8 

16
0 

80
 

40
 

40
 

16
0 

40
 

20
 

20
 

20
 

A
/A

m
er

ic
an

 g
re

en
-w

in
ge

d 
te

al
/M

is
si

ss
ip

pi
/A

00
63

02
03

/2
00

9 
20

 
16

0 
16

0 
16

0 
16

0 
16

0 
40

 
20

 
16

0 
A

/b
lu

e-
w

in
ge

d 
te

al
/L

ou
is

ia
na

/A
00

63
72

97
/2

00
9 

40
 

80
 

40
 

40
 

40
 

20
 

20
 

20
 

40
 

A
/m

al
la

rd
/S

ou
th

 D
ak

ot
a/

A
00

64
95

42
/2

00
8 

80
 

16
0 

80
 

80
 

16
0 

80
 

40
 

20
 

40
 

A
/A

m
er

ic
an

 g
re

en
-w

in
ge

d 
te

al
/U

ta
h/

A
00

65
43

91
/2

00
9 

80
 

80
 

80
 

80
 

80
 

80
 

40
 

40
 

40
 

A
/n

or
th

er
n 

sh
ov

el
er

/O
re

go
n/

A
00

65
46

16
/2

00
8 

80
 

32
0 

80
 

80
 

16
0 

80
 

80
 

16
0 

16
0 

A
/g

ad
w

al
l/A

riz
on

a/
A

00
66

39
34

/2
00

9 
80

 
80

 
80

 
16

0 
16

0 
80

 
40

 
20

 
40

 
A

/b
lu

e-
w

in
ge

d 
te

al
/T

ex
as

/A
00

67
65

66
/2

00
9 

40
 

32
0 

80
 

80
 

80
 

80
 

80
 

80
 

80
 

A
/n

or
th

er
n 

sh
ov

el
er

/M
is

si
ss

ip
pi

/A
00

68
29

47
/2

00
8 

16
0 

80
 

32
0 

32
0 

16
0 

32
0 

16
0 

16
0 

64
0 

A
/m

al
la

rd
/N

ew
 Y

or
k/

A
00

72
33

92
/2

00
9 

20
 

80
 

40
 

40
 

40
 

20
 

20
 

20
 

40
 

A
/m

al
la

rd
/N

ew
 Y

or
k/

A
00

72
34

00
/2

00
9 

40
 

80
 

80
 

16
0 

16
0 

80
 

40
 

40
 

64
 

A
/m

al
la

rd
/O

kl
ah

om
a/

A
00

74
43

83
/2

00
9 

80
 

16
0 

80
 

16
0 

16
0 

80
 

16
0 

16
0 

32
0 

A
/n

or
th

er
n 

sh
ov

el
er

/O
kl

ah
om

a/
A

00
74

43
84

/2
00

9 
80

 
32

0 
80

 
80

 
16

0 
80

 
80

 
80

 
32

0 
A

/m
al

la
rd

/O
kl

ah
om

a/
A

00
74

91
61

/2
00

9 
40

 
80

 
40

 
40

 
80

 
40

 
40

 
40

 
40

 
A

/m
al

la
rd

/Il
lin

oi
s/

A
00

75
53

20
/2

00
9 

80
 

32
0 

16
0 

16
0 

32
0 

16
0 

80
 

80
 

16
0 

A
/A

m
er

ic
an

 g
re

en
-w

in
ge

d 
te

al
/U

ta
h/

A
00

83
17

43
/2

00
9 

16
0 

16
0 

16
0 

16
0 

16
0 

16
0 

40
 

40
 

40
 

A
/n

or
th

er
n 

sh
ov

el
er

/U
ta

h/
A

00
83

17
58

/2
00

9 
80

 
16

0 
32

0 
32

0 
16

0 
16

0 
16

0 
16

0 
16

0 
A

/A
m

er
ic

an
 g

re
en

 w
in

ge
d 

te
al

/U
ta

h/
A

00
83

30
77

/2
00

9 
40

 
16

0 
16

0 
40

 
16

0 
16

0 
40

 
40

 
20

 
A

/m
al

la
rd

/M
ic

hi
ga

n/
A

00
86

95
19

/2
00

9 
80

 
32

0 
80

 
80

 
80

 
80

 
80

 
80

 
32

0 
A

/m
al

la
rd

/N
ew

 Je
rs

ey
/A

00
92

60
89

/2
01

0 
80

 
16

0 
40

 
80

 
80

 
40

 
40

 
20

 
40

 
A

/n
or

th
er

n 
sh

ov
el

er
/M

is
si

ss
ip

pi
/A

00
63

02
07

/2
00

9 
16

0 
32

0 
32

0 
32

0 
32

0 
16

0 
80

 
80

 
80

 
R

ed
 in

di
ca

te
s v

iru
s i

n 
cl

us
te

r I
, g

re
en

 in
di

ca
te

s v
iru

s i
n 

cl
us

te
r I

I, 
an

d 
bl

ue
 in

di
ca

te
s v

iru
s i

n 
cl

us
te

r I
II

. 
A

bb
re

vi
at

io
ns

: B
U

FF
12

00
22

, A
/b

uf
fle

he
ad

/V
A

/A
00

12
00

22
/2

00
8(

H
7N

2)
; M

A
LL

12
24

57
, A

/m
al

la
rd

/N
J/

A
00

12
24

57
/2

00
8(

H
7N

8)
;  

M
A

LL
46

56
18

, A
/m

al
la

rd
/W

I/A
00

46
56

18
/2

00
8(

H
7N

3)
; A

G
W

T5
51

33
1,

 A
/A

m
er

ic
an

 g
re

en
 w

in
ge

d 
te

al
/C

O
/A

00
55

13
31

/2
00

7(
H

7N
3)

;  
A

B
D

U
87

01
08

, A
/b

la
ck

 d
uc

k/
D

E/
A

00
87

01
08

/2
01

0(
H

7N
3)

; M
A

LL
75

08
42

, A
/m

al
la

rd
/M

T/
A

00
75

08
42

/2
00

9(
H

7N
3)

;  
M

A
LL

70
96

57
, A

/m
al

la
rd

/N
E/

A
00

70
96

57
/2

00
9(

H
7N

3)
; A

G
W

T1
15

99
5,

 A
/A

m
er

ic
an

 g
re

en
 w

in
ge

d 
te

al
/A

Z/
A

00
11

59
95

/2
00

9(
H

7N
7)

;  
M

A
LL

55
86

20
, A

/m
al

la
rd

/IA
/A

00
55

86
20

/2
00

8(
H

7N
3)

; M
A

LL
14

22
05

, A
/m

al
la

rd
/IN

/A
00

14
22

05
/2

00
8(

H
7N

3)
;  

A
G

W
T6

60
61

6,
 A

/A
m

er
ic

an
 g

re
en

-w
in

ge
d 

te
al

/C
ol

or
ad

o/
A

00
66

06
16

/2
00

8(
H

7N
3)

;  
A

G
W

T4
61

13
6,

 A
/A

m
er

ic
an

 g
re

en
-w

in
ge

d 
te

al
/U

ta
h/

A
00

46
11

36
/2

00
9(

H
7N

1)
;  

B
W

TE
62

44
84

, A
/b

lu
e-

w
in

ge
d 

te
al

/M
is

so
ur

i/A
00

62
44

84
/2

00
8(

H
7N

3)
;  

R
N

D
U

76
64

03
, A

/ri
ng

-n
ec

ke
d 

du
ck

/T
ex

as
/A

00
76

64
03

/2
00

9(
H

7N
1)

;  
B

W
TE

77
27

94
, A

/b
lu

e-
w

in
ge

d 
te

al
/S

ou
th

 D
ak

ot
a/

A
00

77
27

94
/2

00
9(

H
7N

7)
. 



www.manaraa.com

 

124 

Viruses isolated from wild and domestic birds lacked antigenic diversity. The 

average antigenic distance among wild bird-origin isolates was 1.14 units (SD, 0.57 unit). 

With the exception of one outlier, A/laughing gull/NJ/2455/2000(H7N3), hierarchical 

clustering showed that these isolates merged into one cluster at a distance of 1.47 units. 

The average antigenic distance among seven poultry-origin isolates was 1.13 units (SD, 

0.71 unit). These viruses were grouped into one cluster, at a distance of 1.63 units, by the 

hierarchical clustering method. Poultry-origin isolates were antigenically similar to those 

from wild birds; the distance between poultry-origin isolates and the most antigenically 

similar wild bird-origin isolates was 0.18–0.86 units. 

Limited antigenic diversity was supported by the comparison of amino acid 

sequence of the 135 residues corresponding to those in the reported antibody binding 

sites in influenza HA protein. Results showed that the average shared identity among 

tested isolates was 96.6%, and lack of divergence of these amino acid positions 

(Amino_acid_variations_in_antibody_binding_sites_of_H7_AIVs.pdf). 



www.manaraa.com

 

125 

 

Figure 23 Comparison of genetic and antigenic evolution of H7 AIVs from North 
America. 

(A) Schematic phylogenetic tree of the HA1 nucleotide sequences of H7 AIVs. Boxes 
represent the three major genetic clusters; branches corresponding to viruses subjected to 
antigenic characterization are colored-coded as described in the key; the same color code 
is used in (B). The Eurasian lineage (EU) is represented by the large black triangle, and 
Am represents North American lineage. (B) Antigenic cartography constructed on the 
basis of HI data. Each gridline (horizontal and vertical) represents a 2-fold difference in 
HI titer. 
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Genetic Evolution Dynamics of the HA Gene 

To evaluate the genetic evolution dynamics for the HA gene of H7 AIVs isolated 

from North America, we analyzed (in temporal order) the genetic distance from each 

virus to A/turkey/Oregon/1971(H7N3), the oldest isolate in the phylogeny (Figure 24). 

The average evolutionary rate on the nucleotide level was determined by the slope of the 

linear regression line that fits the data. Viruses in cluster I demonstrated a gradual and 

stable increase of genetic distance to A/turkey/Oregon/1971(H7N3). The regression line 

for cluster I had a slope of 0.0061 (adjusted R2 = 0.88; p < 2.20E-16). The lack of 

continuations from 1971 to 1976 was due to the limited sampling during that time period. 

Viruses in cluster II evolved at a faster rate than those in cluster III (0.0052 [adjusted R2 

= 0.82; p < 2.20E-16] vs. 0.00218 [adjusted R2 = 0.42; p < 2.20E-16], respectively). 

Cluster II was separated into two clades at the 1996 time point, and an elevated increase 

in genetic distance was identified at that time. To determine the fluctuation of 

evolutionary dynamics in cluster II, we independently analyzed viruses in two clades. 

Regression analysis showed that viruses in clade II-1 evolved faster than those in clade 

II-2 (0.008 [adjusted R2 = 0.59; p < 4.07E-9] vs. 0.0046 [adjusted R2 = 0.67; p <2 .20E-

16], respectively). Cluster III consisted of viruses isolated from wild birds and individual 

outbreaks among domestic poultry. To evaluate the evolutionary status for H7 AIVs in 

wild birds more precisely, we conducted additional analyses for wild bird-origin viruses 

in this cluster. The slope of the regression line was 0.0019 (adjusted R2 = 0.31; p < 

2.20E-16), which is lower than that for the entire population. 
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Similar analyses were conducted at the amino acid level by characterizing the 

genetic distance by the number of amino acid substitutions (Figure 24). A consistent 

evolution trend was observed for cluster I, which showed an average of 0.63 amino acid 

substitutions per year (adjusted R2 = 0.70; p < 3.27E-14). Cluster II had an average 

change of 1.47 amino acids per year (adjusted R2 = 0.71; p < 2.20E-16). A dramatic 

increase in the number of amino acid substitutions was observed in 1996; this finding is 

consistent with the observed deletion of eight amino acids in the HA1 protein at the same 

time. However, viruses in clades II-1 and II-2 had a similar average rate of evolution. The 

slopes of regression lines for these two clades were 0.80 (adjusted R2 = 0.26; p < 

0.00044) and 0.78 (adjusted R2 = 0.46; p < 2.20E-16), respectively. The temporal 

fluctuation of amino acid substitutions for viruses in cluster III was not well fitted by the 

linear regression model. However, it was observed that the number of amino acid 

substitutions in viruses isolated from poultry and humans is larger than that in wild bird-

origin viruses. 

Rates of mean nucleotide substitution and the time to the most recent common 

ancestor were also estimated by using the Bayesian Markov Chain Monte Carlo method 

(Table 12). The mean evolutionary rate for the cluster I was estimated as 5.11 × 10−3 

substitutions per site per year (sub/site/year) (95% HPD, 3.94–6.25 × 10−3). Cluster II 

evolved at a higher mean evolutionary rate (5.34 × 10−3 sub/site/year; 95% HPD, 4.68–

6.11 ×10−3) than cluster III (4.84 × 10−3 sub/site/year; 95% HPD, 4.34–5.31 × 10−3). For 

cluster II, the estimated evolutionary rate for a collection of viruses in clade II-2 

decreased to 4.90 × 10−3 sub/site/year (95% HPD, 4.19–5.67 × 10−3). This result 

suggested that cluster II experienced a higher evolutionary rate during 1994–1996 and a 
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lower evolutionary rate afterwards. For cluster III, the estimated evolutionary rate for a 

collection of wild bird-origin viruses was 4.60 × 10−3 sub/site/year (95% HPD, 4.10–5.11 

× 10−3), which is lower than that for the entire cluster III population. 

The corresponding analysis of antigenic evolution dynamics showed that 

antigenicity was relatively stable during 1971–2012 (Figure 24). No clear correspondence 

was observed between the genetic and antigenic evolution dynamics. Of the 93 

characterized viruses, 72 were isolated in 2008 and 2009; the antigenic distances between 

these viruses and A/turkey/Oregon/1971(H7N3) ranged from 0.86 to 3.12 units. The 

antigenic distances between the other 21 isolates and A/turkey/Oregon/1971(H7N3) also 

fall into this range. 

Table 12 Estimated rates of nucleotide substitution and time to most recent common 
ancestor for H7 AIVs from distinct genetic clusters from North America. 

Genetic 
cluster Model 

Substitution rate  
(×10−3 substitutions/site/year) 

 
TMRCA  
(calendar year) 

Mean 95% HPDa ESSb Mean 95% HPD ESS 

I SRD06-UCL–Skylinec 5.11 3.94–6.25 347 
 

1969 1963–1970 289 

II SRD06-UCL–Skyline 5.34 4.68–6.11 693 
 

1993 1990–1993 406 

IId SRD06-UCL–Skyline 4.90 4.19–5.67 856 
 

1996 1995–1996 1070 

III SRD06-UCL–Skyline 4.84 4.34–5.31 389 
 

1992 1991–1992 780 

IIIe SRD06-UCL–Skyline 4.60 4.10–5.11 299 
 

1992 1990– 1992 693 
a HPD: highest probability density. 
b Effective sample size. 
c SRD06: HKY substitution model; UCL: uncorrelated lognormal molecular clock, 

Skyline Coalescent Bayesian Skyline tree model. 
d Includes only viruses isolated after 1996. 
e Includes only viruses isolated from wild birds. 

 



www.manaraa.com

 

 

130  

Ta
bl

e 
13

 
C

ro
ss

 H
I d

at
a 

ob
ta

in
ed

 fo
r r

ep
re

se
nt

at
iv

e 
H

7 
A

IV
s a

ga
in

st
 c

hi
ck

en
 se

ru
m

. 

V
iru

s 

Ti
te

r t
o 

ch
ic

ke
n 

 a
nt

is
er

um
 g

en
er

at
ed

 a
ga

in
st 

15
 se

le
ct

ed
 is

ol
at

es
 

B
U

FF
12

00
22

 
M

A
LL

12
24

57
 

M
A

LL
46

56
18

 
A

G
W

T5
51

33
1 

A
B

D
U

87
01

08
 

M
A

LL
75

08
42

 
M

A
LL

70
96

57
 

A
G

W
T1

15
99

5 
M

A
LL

55
86

20
 

M
A

LL
14

22
05

 
A

G
W

T6
60

61
6 

A
G

W
T4

61
13

6 
B

W
TE

62
44

84
 

R
N

D
U

76
64

03
 

B
W

TE
77

27
94

 

A
/tu

rk
ey

/O
re

go
n/

19
71

 
16

0 
32

0 
32

0 
64

0 
64

0 
16

0 
16

0 
32

0 
32

0 
32

0 
40

 
40

 
16

0 
32

0 
64

0 

A
/d

uc
k/

A
lb

er
ta

/4
9/

19
76

 
80

 
32

0 
16

0 
16

0 
16

0 
16

0 
16

0 
80

 
32

0 
32

0 
16

0 
16

0 
80

 
16

0 
32

0 

A
/s

ea
l/M

A
/1

/1
98

0 
40

 
16

0 
80

 
16

0 
80

 
40

 
40

 
40

 
80

 
80

 
80

 
80

 
20

 
80

 
16

0 

A
/m

al
la

rd
/O

hi
o/

42
1/

19
87

 
40

 
16

0 
80

 
80

 
80

 
40

 
40

 
40

 
80

 
16

0 
80

 
80

 
20

 
80

 
16

0 

A
/tu

rk
ey

/M
N

/3
84

29
/1

98
8 

40
 

40
 

80
 

80
 

80
 

40
 

40
 

40
 

40
 

80
 

40
 

80
 

40
 

80
 

80
 

A
/tu

rk
ey

/N
Y

/4
45

0-
4/

19
94

 
80

 
80

 
80

 
16

0 
80

 
80

 
80

 
40

 
80

 
80

 
16

0 
80

 
40

 
80

 
40

 

A
/p

in
ta

il/
M

N
/4

23
/1

99
9 

80
 

16
0 

32
0 

64
0 

32
0 

16
0 

80
 

80
 

32
0 

32
0 

16
0 

80
 

80
 

16
0 

32
0 

A
/la

ug
hi

ng
 g

ul
l/N

J/
24

55
/2

00
0 

10
 

10
 

32
0 

64
0 

32
0 

16
0 

32
0 

16
0 

32
0 

32
0 

32
0 

64
0 

16
0 

32
0 

64
0 

A
/tu

rk
ey

/V
A

/S
EP

-6
7/

20
02

 
40

 
40

 
80

 
80

 
80

 
80

 
80

 
80

 
80

 
80

 
40

 
80

 
40

 
80

 
80

 

A
/c

hi
ck

en
/C

T/
26

04
13

-2
/2

00
3 

40
 

40
 

40
 

80
 

40
 

40
 

20
 

20
 

40
 

40
 

40
 

20
 

20
 

40
 

40
 

A
/c

hi
ck

en
/B

rit
ish

 C
ol

um
bi

a/
31

45
14

-2
/2

00
4 

80
 

16
0 

16
0 

16
0 

16
0 

16
0 

80
 

16
0 

16
0 

16
0 

80
 

80
 

80
 

16
0 

32
0 

A
/c

in
na

m
on

 te
al

/M
ex

ic
o/

28
17

/2
00

6 
80

 
16

0 
32

0 
32

0 
32

0 
16

0 
16

0 
16

0 
32

0 
32

0 
32

0 
32

0 
16

0 
32

0 
32

0 

A
/n

or
th

er
n 

sh
ov

el
er

/U
ta

h/
A

00
37

49
96

/2
00

7 
80

 
16

0 
16

0 
16

0 
16

0 
16

0 
80

 
40

 
80

 
16

0 
80

 
32

0 
40

 
32

0 
32

0 

A
/b

uf
fle

he
ad

/V
irg

in
ia

/A
00

12
00

22
/2

00
8 

80
 

80
 

80
 

16
0 

32
0 

80
 

80
 

80
 

80
 

64
0 

16
0 

32
0 

80
 

16
0 

32
0 

A
/A

m
er

ic
an

 g
re

en
-w

in
ge

d 
te

al
/A

riz
on

a/
A

00
11

59
94

/2
00

9 
40

 
80

 
80

 
16

0 
80

 
80

 
80

 
40

 
80

 
16

0 
40

 
16

0 
40

 
16

0 
16

0 

A
/b

lu
e-

w
in

ge
d 

te
al

/T
ex

as
/A

00
46

36
79

/2
01

0 
80

 
32

0 
16

0 
16

0 
16

0 
80

 
80

 
40

 
16

0 
32

0 
80

 
32

0 
80

 
16

0 
32

0 

A
/c

hi
ck

en
/J

al
is

co
/C

PA
-1

22
83

/2
01

2 
40

 
40

 
80

 
80

 
80

 
40

 
40

 
40

 
40

 
80

 
40

 
80

 
40

 
80

 
16

0 

Th
e 

17
 se

le
ct

ed
 H

7 
A

IV
s r

ep
re

se
nt

 th
e 

m
ax

im
al

 te
m

po
ra

l c
ov

er
ag

e 
of

 9
3 

vi
ru

se
s i

so
la

te
d 

du
rin

g 
19

71
-2

01
2.

 
A

bb
re

vi
at

io
ns

:  
B

U
FF

12
00

22
, A

/b
uf

fle
he

ad
/V

A
/A

00
12

00
22

/2
00

8(
H

7N
2)

; M
A

LL
12

24
57

, A
/m

al
la

rd
/N

J/
A

00
12

24
57

/2
00

8(
H

7N
8)

; M
A

LL
46

56
18

, A
/m

al
la

rd
/W

I/A
00

46
56

18
/2

00
8(

H
7N

3)
;  

A
G

W
T5

51
33

1,
 A

/A
m

er
ic

an
 g

re
en

 w
in

ge
d 

te
al

/C
O

/A
00

55
13

31
/2

00
7(

H
7N

3)
; A

B
D

U
87

01
08

, A
/b

la
ck

 d
uc

k/
D

E/
A

00
87

01
08

/2
01

0(
H

7N
3)

; M
A

LL
75

08
42

, 
A

/m
al

la
rd

/M
T/

A
00

75
08

42
/2

00
9(

H
7N

3)
;  

M
A

LL
70

96
57

, A
/m

al
la

rd
/N

E/
A

00
70

96
57

/2
00

9(
H

7N
3)

; A
G

W
T1

15
99

5,
 A

/A
m

er
ic

an
 g

re
en

 w
in

ge
d 

te
al

/A
Z/

A
00

11
59

95
/2

00
9(

H
7N

7)
;M

A
LL

55
86

20
, 

A
/m

al
la

rd
/IA

/A
00

55
86

20
/2

00
8(

H
7N

3)
;  

M
A

LL
14

22
05

, A
/m

al
la

rd
/IN

/A
00

14
22

05
/2

00
8(

H
7N

3)
; A

G
W

T6
60

61
6,

 A
/A

m
er

ic
an

 g
re

en
-w

in
ge

d 
te

al
/C

ol
or

ad
o/

A
00

66
06

16
/2

00
8(

H
7N

3)
;  

A
G

W
T4

61
13

6,
 A

/A
m

er
ic

an
 g

re
en

-w
in

ge
d 

te
al

/U
ta

h/
A

00
46

11
36

/2
00

9(
H

7N
1)

; B
W

TE
62

44
84

, A
/b

lu
e-

w
in

ge
d 

te
al

/M
is

so
ur

i/A
00

62
44

84
/2

00
8(

H
7N

3)
;  

R
N

D
U

76
64

03
, A

/ri
ng

-n
ec

ke
d 

du
ck

/T
ex

as
/A

00
76

64
03

/2
00

9(
H

7N
1)

;B
W

TE
77

27
94

, A
/b

lu
e-

w
in

ge
d 

te
al

/S
ou

th
 D

ak
ot

a/
A

00
77

27
94

/2
00

9(
H

7N
7)

. 



www.manaraa.com

 

131 

Natural Selection for HA Gene of H7 AIVs in North America 

The selection pressure for the HA gene was investigated independently for each 

of the three genetic clusters (Table 14). The mean dN/dS for cluster II (dN/dS  = 0.1875–

0.2154) was higher than that for cluster III (dN/dS  = 0.1232–0.1407). The HA gene of 

viruses in clade II-2 had a lower mean dN/dS (0.1821–0.2121) than the entire population 

in cluster II. This finding suggests that the purifying selection for cluster II was lower 

during 1994–1996 than afterwards. Wild bird-origin isolates in cluster III were 

considered separately, and the results showed that the mean dN/dS was lower than that for 

the entire population in cluster III. This finding suggests that the purifying selection 

pressure was greater for wild bird-origin viruses than for poultry-origin viruses. Overall, 

the HA gene of H7 AIVs circulating in North America is under strong purifying 

selection, although there is variation in selection pressure for distinct genetic clusters. 

Amino acid position 189 (H3 numbering; H7 numbering, 180) in the HA1 protein 

was found to be under positive selection for the wild bird-origin viruses in cluster III. The 

amino acid profile of this position for H7 AIVs from Eurasia and North America was 

analyzed. Viruses isolated from land-based poultry and waterfowl were considered 

separately (Table 15). For viruses in the North American lineage, position 189 was found 

to be highly polymorphic in genetic clusters I and III: three and five distinct amino acids 

were observed, respectively, and T was the major amino acid in both clusters. HA gene in 

cluster II showed a distinct and conserved profile for position 189; with only one 

exception, S was the predominant amino acid. Amino acid profiles were also analyzed for 

three H7 viruses isolated from humans in North America: A/NewYork/107/2003(H7N2), 
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which is from cluster II, and A/Mexico/InDRE7218/2012(H7N3) and 

A/Canada/rv504/2004(H7N3), which are from cluster III. Amino acid S was observed at 

position 189 in A/NewYork/107/2003(H7N2), and amino acid T was observed in the 

other two viruses. Amino acid S was not observed at position 189 of Eurasian lineage H7 

AIVs. 

Table 14 Selection pressure in HA1 protein of H7 AIVs from North America. 

Genetic cluster, model dN/dS Positively selected sites (probability) 
I  

  M1a 0.1048 
  M7 0.0999  

II  
  M1a 0.2154 
  M7 0.1875  

IIa  
  M1a 0.2121 
  M7 0.1821  

III  
  M1a 0.1407 
  M7 0.1232  

IIIb  
  M1a 0.1242 
  M8 0.1086 189c (99.7%) 

a Include only viruses isolated after 1996. 
b Include only viruses isolated from waterfowl. 
c H3 numbering. 

Table 15 Amino acid polymorphism at position 189 (H3 numbering) in HA1 protein 
for H7 AIVs from North America and Eurasia. 

Genetic group Species No. of 
sequences 

Relevant amino acids No. of corresponding amino acids 

NA Ia Lb 16 T 16 
W 32 A/N/T 5/4/23 

NA II L 221 I/S 1/220 
W 15 S 15 

NA III L 39 A/N/T 1/6/32 
W 351 A/D/I/N/T 11/48/1/20/271 

NA human isolates He 3 S/T 1/2 
EAc L/W 1,118 A/G/N/T 670/1/1/446 
a Genetic cluster I in North American lineage. 
b L, land-based poultry; W, waterfowl; H, human. 
c Eurasian lineage. 
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Frequent Reassortment of Internal Genes of H7 AIVs in NA-WB Lineage 

Panoramic phylogenetic analyses of all H7 complete genomes showed a clear 

division of the two major lineages (North American and Eurasian) for each gene segment 

(Figure 25). It is noteworthy that the topology of the NS gene segment phylogeny showed 

a deep divergence between the A and B alleles: within each allele, virus isolated from 

North America and Eurasia was separated. Phylogenetic analysis of internal genes in the 

NA-WB lineage demonstrated a high level of heterogeneity (Figure 26). Multiple distinct 

clades could be identified for each gene segment. The largest number of clades was 

observed in the PB2 phylogeny, which had 14 clades. Phylogeny of PB1, PA, and NP 

gene segments could be separated into 12 clades. Less genetic diversity was observed for 

the matrix protein and NS gene segments, which had three and two distinct clades, 

respectively. 

The frequencies and patterns of reassortment of the six internal gene segments 

were assessed by determining the congruence among each gene’s phylogenetic tree. 

Results showed that the topologies of the internal gene trees were more similar to each 

other than to random phylogenetic trees (Figure 27), suggesting that the internal gene 

segments are not completely independent from each other. However, the dissimilarities in 

tree topology were extensive. The most significant incongruence was observed between 

NS and other gene segments; the NS gene tree was found to be closer in topology to 

random trees rather than to the other five internal gene trees. These results indicate 

frequent reassortment of the internal genes for H7 AIVs in lineage NA-WB; no clear link 

among specific gene segments was observed. 
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We assigned genotypes to viruses in the NA-WB lineage and analyzed the 

dynamics of these genotypes. Because 91% of the viruses were isolated during 2001–

2013, our analysis was constrained to viruses from this time period. H7 AIVs in the NA-

WB lineage demonstrated diverse genotypes: we identified 104 distinct genotypes for the 

internal gene constellation (Figure 28). Multiple genotypes were observed in the same 

year, and the largest number of genotype (29) was observed in 2009. Internal gene 

constellations were transient rather than stable, and no individual genotype existed 

throughout 2001–2013. A total of 92 genotypes existed for only one year, and two 

genotypes existed for the maximal time span of five years. 
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Figure 25 Maximum likelihood phylogenetic trees for internal gene segments of H7 
AIVs from Eurasian and North American lineage. 

Black bars on the lower right indicate two alleles in the NS gene segment phylogenetic 
tree. Bootstrap values estimated from 100 resamplings of the sequence data are shown 
adjacent to selected nodes. 
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Figure 26 Maximum likelihood phylogenetic trees for internal gene segments of H7 
AIVs derived from wild birds in North America. 

Boxes represent the genetic clades. Scale bars indicate substitutions per site. 
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Figure 27 Congruence in topology among six internal gene segment phylogenetic trees 
for H7 AIVs derived from wild birds in North America. 

Each column represents the difference in log likelihood value when six internal gene 
phylogenies and 100 random phylogenies were fitted to the same dataset. The difference 
in log likelihood value for each gene phylogeny is indicated by a colored dot. Range for 
random phylogenies is represented by two solid lines. 
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Figure 28 Year-by-year analysis of the evolution dynamics of internal gene 
constellations for H7 AIVs derived from wild birds in North America during 
2001–2013. 

Small black dots indicate gene constellations that existed for only one year. Larger 
colored dots indicate gene constellations that were observed in multiple years; the span of 
years is indicated by a dashed line between the dots, and colors indicate the number of 
years constellations existed. 
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Discussion 

We genetically and antigenically characterized 93 H7 AIVs isolated from North 

America. Our results show that H7 AIVs in North America have wide genetic diversity. 

Gradual accumulation of nucleotide and amino acid substitutions is observed for the HA 

gene of H7 AIVs isolated from wild and domestic birds. Our results also show a limited 

antigenic diversity among the H7 viruses we tested. 

In wild birds, the limited antigenic diversity for H7 AIVs is consistent with the 

concept of evolutionary stasis (248). These results are consistent with those from other 

studies of wild bird-origin H7 viruses in other regions. For example, a 2005 study showed 

that four H7 AIVs isolated from mallards in Sweden and the Netherlands in 2000 and 

2002 had relatively conserved antigenic properties (249). In addition, antigenic 

differences between these mallard-derived H7 isolates and an HPAI H7N7 strain isolated 

in the Netherlands in 2003 were within a 4-fold change. No significant antigenic 

differences (i.e., within a 4-fold change) were observed for nine H7 AIVs isolated in Italy 

and China during 1999–2005 (196); of the nine isolates, four were H7N7 viruses derived 

from ducks in China in 2003, three were H7 isolates derived from mallards in Italy during 

2001–2005, and two were H7 viruses derived from turkeys in Italy in 1999 and 2002. 

Our molecular characterization results suggest that the genetic evolution pattern in 

the isolates we tested is gradual and stable. The estimated mean rate of evolution for the 

H7 gene of AIVs circulating among wild birds in North America is 4.60 × 10−3 

sub/site/year, which is similar to the rate for Eurasian lineage H7 viruses (5.75 × 10−3 

sub/site/year) (234). Selection analysis showed that the H7 gene is under strong purifying 

selection in wild birds; however, no amino acids at known antibody binding sites were 
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under positive selection. The limited antigenic diversity among the H7 isolates might be 

associated with the absence of certain pattern recognition receptors in the immune 

response system of wild birds. These receptors are triggered by influenza virus and could 

initiate the activation of innate immune responses. A 2010 study (250) showed that the 

presence of the retinoic acid–inducible gene 1 (RIG-I) in ducks induces the production of  

IFN-β and expression of downstream IFN-stimulated antiviral genes; however, the 

absence of RIG-I in chickens contributes to their increased susceptibility (compared with 

that of ducks) to influenza virus. In addition, Toll-like receptors (TLR) induce the 

expression of type I IFN and proinfammatory cytokines (251). TLRs 3,7,8, and 9 

upregulate in naturally occurring influenza, and they are associated with innate virus 

inhibitory and proinflammatory responses (252). TLRs in birds differ from those in 

mammals. Furthermore,  TLR9 is absent in avian species, and many TLRs in wild birds 

have yet to be identified (253). 

Vaccination is a key component of the control strategy for HPAI viruses. 

However, antigenic variations in AIVs from domestic poultry have been reported, and 

these variations seem to be caused by the use of vaccine in poultry flocks. In 2002, 

poultry flocks across Italy were vaccinated to prevent an outbreak of H7N3 virus; the 

vaccine contained an inactivated H7N1 AIV (i.e., a vaccine with the same HA subtype as 

the outbreak virus but with an antigenically and genetically different NA subtype). 

Antigenic characterization of a longitudinal collection of 41 isolates showed large 

antigenic difference between viruses isolated before and after implementation of the 

vaccination program (169). Antigenic change was mirrored by the simultaneous 

appearance of four amino acid substitutions within the antibody binding sites, and one 
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amino acid was positively selected after the use of vaccine. In addition, the poultry 

vaccination program in Mexico has facilitated the antigenic evolution of HPAI H5N2 

virus in that country. An outbreak of HPAI H5N2 virus was detected in 1994 in Mexico, 

and a vaccination program, using inactivated vaccine, was implemented in 1995. 

Phylogenetic analysis of 52 H5N2 viruses isolated during 1993–2002 showed that two 

genetically different sub-lineages had emerged after introduction of the vaccine program 

and replaced the early sub-lineages (168). Viruses in these two new sub-lineages had 

undergone antigenic drift and acquired a more than 4-fold antigenic change from the 

vaccine strain. Six amino acid substitutions located within antibody sites A, B, and C 

were detected for these two novel sub-lineages. Similar changes were observed for the 

emergence of an H5N1 influenza variant in China. Since September 2005, routine 

vaccination programs against H5N1 virus in domestic poultry have been conducted 

nationwide in China. However, results of serologic testing of serum samples from 1,113 

chickens in Guangdong and Guizhou, China, suggested that among the vaccinated 

poultry, protection against an FJ-like H5N1 variant was poor compared with that against 

other co-circulating H5N1 viruses (254). The presence of vaccine pressure probably 

selected the FJ-like H5N1 viruses, and these viruses became predominant in the region. 

The change of antigenicity in these outbreaks was mirrored by the observed fast 

rate of evolution. The H7N3 AIVs from the Italian epidemic were estimated to evolve at 

a mean rate of 8.04 × 10 × 10−3 sub/site/year, whereas the evolutionary rates for two 

emerging H5N2 sub-lineages in Mexico were estimated to be 12 × 10−3 and 10 × 10−3 

sub/site/year, respectively. These evolutionary rates are significantly higher than those 

reported for H7 and H5 viruses from domestic poultry in the absence of vaccine program, 
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as exemplified by the range of evolutionary rates for H5N1 viruses isolated from 

Thailand, Turkey, and Nigeria: 2.5 × 10−3 to 5.2 × 10−3 sub/site/year (166). The findings 

from these studies (166, 168, 169, 254) suggest that the presence of vaccine pressure may 

drive antigenic drift of AIVs in domestic poultry. In our study, antigenic cartography 

showed that the average antigenic distance among seven poultry-origin H7 isolates was 

1.13 units (SD, 0.71 unit). The limited antigenic diversity may be attributable to the 

absence of large-scale vaccination programs against H7 AIVs in North America, with the 

exception of Mexico. The estimated mean evolution rate for the H7 gene of AIVs from 

domestic poultry in the United States was 5.34 × 10−3 sub/site/year. This rate is 

significantly lower than that found in the presence of a vaccination program but similar to 

that found in the absence of vaccine program. 

Adaptations are required when IAVs are transmitted across species, including 

from waterfowl to land-based birds (e.g., chickens and turkeys) (9). HA protein plays an 

important role in host-cell recognition, and mutation in HA protein has been identified as 

a major determinant of host shift to domestic poultry. Previous research identified two 

amino acid substitutions in the HA1 protein for H7 AIVs after their introduction from 

wild birds to domestic poultry (150). Furthermore, a 1997 study showed that evolution of 

the HA gene could increase significantly after introduction into domestic poultry; the 

evolution rate for the HA gene of H5 AIVs increased significantly after introduction into 

domestic poultry in Mexico (255). Our results showed the same trend for the H7 gene of 

AIVs from North America: the HA gene of poultry-origin H7 AIVs evolves faster than 

that of waterfowl-origin viruses. Moreover, results showed that the evolution rate for the 

H7 gene was faster during 1994–1996 than in subsequent years. The rapid evolution 
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during 1994–1996 was mirrored by an 8–amino acid deletion in 1996 at positions 212–

219 in the HA1 protein. This deletion removes five of six consecutive amino acids in part 

of the receptor binding site. These findings suggest that the H7 gene underwent rapid 

adaptation in the receptor binding domain after introduction into domestic poultry. 

Of interest, position 189 (H3 numbering; H7 numbering, 180) in the HA1 protein 

was identified as being under positive selection pressure, and this site is located in the 

receptor binding site for H7 IAVs (256). Extensive polymorphisms, representing six 

distinct amino acids (A, D, I, N, S, and T), are present at position 189. A previous study 

showed that propagation of human H1N1 influenza virus in embryonated chicken eggs 

could cause the substitution E189K at the HA1 protein (257). R189K was found to have 

contributed to the antigenic drift of H3N2 IAV (258), and position 189 plays an 

important role for the antigenicity of H3 equine influenza virus (259). Another study 

showed that single amino acid changes at position A186D (H3 numbering, 189) could 

increase yield of A/California/7/09(H1N1) virus in eggs (260). Most influenza viruses 

recovered from avian samples have been propagated by using chicken embryonated eggs, 

and a previous study demonstrated frequent adaptation of H1N1 waterfowl-origin AIVs 

during propagation in embryonated eggs (261). The receptors in chicken embryonated 

eggs and those in the mallard gastrointestinal track are not exactly the same. In addition, 

expression of sialic acids showed substantial host-specific distinctions among avian 

species. Expression of α2,3-linked sialic acids and α2,6-linked sialic acids were observed 

in chicken trachea, whereas α2,3-linked sialic acids were predominant in ducks (262, 

263). Thus, it is possible that the polymorphisms and positive selection detected in 

position 189 in the HA1 protein were due to viral propagation in embryonated eggs. 
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Our phylogenetic analysis identified the 2-way intercontinental flow of the AIV 

H7 gene through the migration of wild birds. At least two independent introductions (in 

1992 and 1994) from the Eurasian genetic pool to the North American genetic pool were 

identified. These introductions were not observed in earlier studies with smaller datasets 

(264, 265). Early research detected a subtype H6 IAV in the United States with an HA 

gene derived from the Eurasian gene pool; the virus subsequently caused an outbreak 

among poultry in California during 2000–2002 (50). The introduced Eurasian H6 virus 

has led to the replacement of the endemic H6 AIVs in North America. Recently, 

outbreaks of novel HPAI H5 viruses have been detected in the United States and Canada. 

These viruses originated from a wholly Eurasia-origin H5N8 virus introduced to North 

America by migratory birds through Beringia in 2014 (266). Two novel reassortants 

(H5N2 and H5N1) were generated by reassortments with viruses circulating in North 

America. The Beringian Crucible, including Alaska and the Russian Far East, serves as a 

common breeding area for diverse bird species from Asia and North America. This area 

provides an ideal environment for reassortment between IAVs carried by migratory birds 

from distinct gene pools, and it allows for the intercontinental transfer of gene segments 

or whole virus. Gene flow increases the diversity in individual genetic pools, and 

diversity could enhance the risk of generating novel strains that can spread more 

efficiently among birds and even cross the species barrier and cause transmission to 

mammals. 

Our evolutionary analysis revealed frequent reassortment of six internal gene 

segments of H7 AIVs in the NA-WB lineage; no clear link was identified for any specific 

gene segment. The internal gene constellation was diverse and transient. This finding was 
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concordant with those from a 2008 study conducted with a smaller dataset of AIVs and 

without differentiating the HA subtype (48). However, our finding of a diverse and 

transient gene constellation differed from the finding of a limited number of stable 

internal gene cassettes for IAVs adapted to mammals. The eight gene segments of IAVs 

could evolve differently due to different selection pressures. The evolution of the internal 

gene segments may be determined by functional constraints rather than immune pressure 

for the genes coded for the two surface proteins. In wild birds, internal protein genes are 

highly conserved on the amino acid level, and they could form a large pool of 

functionally equivalent gene segments. Such a pool would allow frequent reassortment 

because the exchange of functionally equivalent gene segments is not likely to attenuate 

the relative fitness of the reassorted viruses. For mammalian adapted IAVs, certain 

internal gene constellations were suggested to confer a selective advantage to the virus 

(227). Mutations may be acquired for internal genes after adaptation to a new host, and 

those mutations would separate the viruses from those in the natural reservoir. The 

protein–protein interaction could force the co-evolution of these gene segments and 

maintain the existence of a specific internal gene constellation. 

In summary, our findings demonstrate a limited antigenic diversity among 

contemporary H7 avian-origin IAVs from North America. H7 IAVs from wild birds, 

domestic poultry, and a seal, which together represent a diverse geographic and temporal 

coverage, were included in this study. The limitation of this study was the small number 

of H7N3 isolates from the ongoing AIV outbreak in Mexico. Additional studies on a 

longitudinal collection of H7N3 viruses from the outbreak in Mexico would add to our 

understanding of the influence vaccination programs have on genetic and antigenic 
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evolutionary dynamics. LPAI H7N9 viruses are enzootic in China (234), but the antigenic 

properties of these viruses have not been characterized. An antigenic comparison of H7 

AIVs from the United State and those from outbreaks in other regions, including China 

and Europe, is also lacking. Due to the possible transmission of H7 AIVs across regions 

and continents, constant monitoring of emerging H7 AIVs in North America must 

continue. 
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CONCLUSIONS 

The emergence of novel avian origin IAVs presents a continuous threat to animal 

and public health. The objectives of this dissertation research are to infer the genesis of 

two emerging avian origin IAVs, LPAI H10N8 and HPAI H7N8 viruses, and to 

investigate the antigenic diversity and genetic evolution of H7 AIVs isolated from North 

America over the past 40 years. The findings and contributions are concluded as 

following. 

First, a gradual increase in IAV prevalence and detection of H10 viruses was 

observed in the LPM visited by the first patient infected with the novel H10N8 virus. 

AIVs that are genetically close to the human H10N8 isolate were recovered from this 

LPM. High seroprevalence of H10 virus was observed in chickens and ducks from five 

LPMs in the city. These findings suggested that LPM is the most probable source of 

human infection with this novel H10N8 virus, and this virus appears to present 

throughout the LPM system in the city. These findings also highlight the role of LPMs in 

the zoonotic transmission of AIVs and suggest that the existing influenza ecosystem in 

Southern China could favor the emergence of novel IAVs that present potential risk to 

animal and human health. 

Second, the novel H7N8 virus most likely circulated among diving ducks in the 

Mississippi flyway during autumn 2015 and was subsequently introduced to Indiana 
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turkey, in which it evolved from LPAI into HPAI. H4N8 IAVs circulating among diving 

duck possess a gene constellation comprising five H7N8–like gene segments (except PA, 

HA, and NP, >98% sequence identity). Preceding the outbreak, an isolate with six gene 

segments (except NP and MP) sharing >99% sequence identity with those of H7N8 

turkey viruses was recovered from a diving duck. These findings suggest that viral gene 

constellations circulating among diving ducks could contribute towards the emergence of 

IAVs that can affect domestic poultry, and diving ducks may serve as the potentially 

unique IAV reservoir or uniquely contribute to the maintenance, diversification, and 

transmission of IAVs in wild birds. These findings also highlight the importance of 

genomic sequencing and gene constellation characterization in wild bird IAV 

surveillance. 

Third, a gradual accumulation of nucleotide and amino acid substitutions in the 

HA gene of H7 AIVs isolated from wild and domestic birds in North America has led to 

wide genetic diversity. Limited antigenic diversity was observed among the 93 North 

American contemporary H7 AIVs we tested. These findings suggested that continuous 

genetic evolution has not led to significant antigenic diversity for contemporary H7 AIVs 

from North America. 

In summary, this dissertation study addresses the immediate public and animal 

health problem presented by the emergence of two novel avian origin IAVs, LPAI 

H10N8 and HPAI H7N8 viruses. In addition, it investigates the long-term antigenic and 

genetic evolution of H7 AIVs from North America over the past 40 years. The findings in 

this dissertation add to our knowledge of the natural history of IAVs and are critical for 

formulation of effective disease prevention and control strategies. 



www.manaraa.com

 

149 

REFERENCES 

1. Morens DM, Folkers GK, Fauci AS. 2004. The challenge of emerging and re-
emerging infectious diseases. Nature 430:242-249. 

2. Potter CW. 2001. A history of influenza. Journal of applied microbiology 
91:572-579. 

3. Bouvier NM, Palese P. 2008. The biology of influenza viruses. Vaccine 26:D49-
D53. 

4. Webster RG, Bean WJ, Gorman OT, Chambers TM, Kawaoka Y. 1992. 
Evolution and ecology of influenza A viruses. Microbiological reviews 56:152-
179. 

5. Hause BM, Collin EA, Liu R, Huang B, Sheng Z, Lu W, Wang D, Nelson EA, 
Li F. 2014. Characterization of a novel influenza virus in cattle and swine: 
proposal for a new genus in the Orthomyxoviridae family. MBio 5:e00031-00014. 

6. Collin EA, Sheng Z, Lang Y, Ma W, Hause BM, Li F. 2015. Cocirculation of 
two distinct genetic and antigenic lineages of proposed influenza D virus in cattle. 
Journal of virology 89:1036-1042. 

7. Osterhaus A, Rimmelzwaan G, Martina B, Bestebroer T, Fouchier R. 2000. 
Influenza B virus in seals. Science 288:1051-1053. 

8. Kimura H, Abiko C, Peng G, Muraki Y, Sugawara K, Hongo S, Kitame F, 
Mizuta K, Numazaki Y, Suzuki H. 1997. Interspecies transmission of influenza 
C virus between humans and pigs. Virus research 48:71-79. 

9. Taubenberger JK, Kash JC. 2010. Influenza virus evolution, host adaptation, 
and pandemic formation. Cell host & microbe 7:440-451. 

10. Horimoto T, Kawaoka Y. 2001. Pandemic threat posed by avian influenza A 
viruses. Clinical microbiology reviews 14:129-149. 

11. Tong S, Li Y, Rivailler P, Conrardy C, Castillo DAA, Chen L-M, Recuenco 
S, Ellison JA, Davis CT, York IA. 2012. A distinct lineage of influenza A virus 
from bats. Proceedings of the National Academy of Sciences 109:4269-4274. 



www.manaraa.com

 

150 

12. Reid AH, Taubenberger JK. 2003. The origin of the 1918 pandemic influenza 
virus: a continuing enigma. Journal of General Virology 84:2285-2292. 

13. Taubenberger JK, Morens DM. 2006. 1918 Influenza: the mother of all 
pandemics. Rev Biomed 17:69-79. 

14. Johnson NP, Mueller J. 2002. Updating the accounts: global mortality of the 
1918-1920" Spanish" influenza pandemic. Bulletin of the History of Medicine 
76:105-115. 

15. Thompson M, Shay D, Zhou H, Bridges C, Cheng P, Burns E, Bresee J, Cox 
N. 2010. Estimates of deaths associated with seasonal influenza-United States, 
1976-2007. Morbidity and Mortality Weekly Report 59:1057-1062. 

16. Thompson WW, Shay DK, Weintraub E, Brammer L, Bridges CB, Cox NJ, 
Fukuda K. 2004. Influenza-associated hospitalizations in the United States. Jama 
292:1333-1340. 

17. Molinari N-AM, Ortega-Sanchez IR, Messonnier ML, Thompson WW, 
Wortley PM, Weintraub E, Bridges CB. 2007. The annual impact of seasonal 
influenza in the US: measuring disease burden and costs. Vaccine 25:5086-5096. 

18. Swayne D, Suarez D. 2000. Highly pathogenic avian influenza. Revue 
Scientifique et Technique-office International des Epizooties 19:463-475. 

19. Stegeman A, Bouma A, Elbers AR, de Jong MC, Nodelijk G, de Klerk F, 
Koch G, van Boven M. 2004. Avian influenza A virus (H7N7) epidemic in The 
Netherlands in 2003: course of the epidemic and effectiveness of control 
measures. Journal of Infectious Diseases 190:2088-2095. 

20. Subbarao K, Klimov A, Katz J, Regnery H, Lim W, Hall H, Perdue M, 
Swayne D, Bender C, Huang J. 1998. Characterization of an avian influenza A 
(H5N1) virus isolated from a child with a fatal respiratory illness. Science 
279:393-396. 

21. Cauthen AN, Swayne DE, Schultz-Cherry S, Perdue ML, Suarez DL. 2000. 
Continued circulation in China of highly pathogenic avian influenza viruses 
encoding the hemagglutinin gene associated with the 1997 H5N1 outbreak in 
poultry and humans. Journal of virology 74:6592-6599. 

22. Peiris J, Yu W, Leung C, Cheung C, Ng W, Nicholls Ja, Ng T, Chan K, Lai S, 
Lim W. 2004. Re-emergence of fatal human influenza A subtype H5N1 disease. 
The Lancet 363:617-619. 

23. Hien TT, Liem NT, Dung NT, San LT, Mai PP, Chau NvV, Suu PT, Dong 
VC, Mai LTQ, Thi NT. 2004. Avian influenza A (H5N1) in 10 patients in 
Vietnam. New England Journal of Medicine 350:1179-1188. 



www.manaraa.com

 

151 

24. Sedyaningsih ER, Isfandari S, Setiawaty V, Rifati L, Harun S, Purba W, 
Imari S, Giriputra S, Blair PJ, Putnam SD. 2007. Epidemiology of cases of 
H5N1 virus infection in Indonesia, July 2005–June 2006. Journal of Infectious 
Diseases 196:522-527. 

25. Lee C-W, Suarez DL, Tumpey TM, Sung H-W, Kwon Y-K, Lee Y-J, Choi J-
G, Joh S-J, Kim M-C, Lee E-K. 2005. Characterization of highly pathogenic 
H5N1 avian influenza A viruses isolated from South Korea. Journal of Virology 
79:3692-3702. 

26. Viseshakul N, Thanawongnuwech R, Amonsin A, Suradhat S, Payungporn S, 
Keawchareon J, Oraveerakul K, Wongyanin P, Plitkul S, Theamboonlers A. 
2004. The genome sequence analysis of H5N1 avian influenza A virus isolated 
from the outbreak among poultry populations in Thailand. Virology 328:169-176. 

27. Liu J, Xiao H, Lei F, Zhu Q, Qin K, Zhang X-W, Zhang X-l, Zhao D, Wang 
G, Feng Y. 2005. Highly pathogenic H5N1 influenza virus infection in migratory 
birds. Science 309:1206-1206. 

28. Ducatez M, Olinger C, Owoade A, De Landtsheer S, Ammerlaan W, Niesters 
H, Osterhaus A, Fouchier R, Muller C. 2006. Avian flu: multiple introductions 
of H5N1 in Nigeria. Nature 442:37-37. 

29. Salzberg SL, Kingsford C, Cattoli G, Spiro DJ, Janies DA, Aly MM, Brown 
IH, Couacy-Hymann E, De Mia GM, Dung DH. 2007. Genome analysis linking 
recent European and African influenza (H5N1) viruses. Emerging infectious 
diseases 13:713. 

30. Alexander DJ. 2000. A review of avian influenza in different bird species. 
Veterinary microbiology 74:3-13. 

31. Becker W. 1966. The isolation and classification of tern virus: influenza virus 
A/tern/South Africa/1961. Journal of Hygiene 64:309-320. 

32. Slemons RD, Johnson DC, Osborn JS, Hayes F. 1974. Type-A influenza 
viruses isolated from wild free-flying ducks in California. Avian diseases:119-
124. 

33. Olsen B, Munster VJ, Wallensten A, Waldenström J, Osterhaus AD, 
Fouchier RA. 2006. Global patterns of influenza A virus in wild birds. science 
312:384-388. 

34. Vandegrift KJ, Sokolow SH, Daszak P, Kilpatrick AM. 2010. Ecology of 
avian influenza viruses in a changing world. Annals of the New York Academy of 
Sciences 1195:113-128. 



www.manaraa.com

 

152 

35. Hinshaw V, Webster R, Turner B. 1980. The perpetuation of orthomyxoviruses 
and paramyxoviruses in Canadian waterfowl. Canadian Journal of Microbiology 
26:622-629. 

36. Kawaoka Y, Chambers TM, Sladen WL, Gwebster R. 1988. Is the gene pool 
of influenza viruses in shorebirds and gulls different from that in wild ducks? 
Virology 163:247-250. 

37. Fouchier RA, Munster V, Wallensten A, Bestebroer TM, Herfst S, Smith D, 
Rimmelzwaan GF, Olsen B, Osterhaus AD. 2005. Characterization of a novel 
influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. 
Journal of virology 79:2814-2822. 

38. Krauss S, Obert CA, Franks J, Walker D, Jones K, Seiler P, Niles L, Pryor 
SP, Obenauer JC, Naeve CW. 2007. Influenza in migratory birds and evidence 
of limited intercontinental virus exchange. PLOS pathog 3:e167. 

39. Slemons RD, Easterday BC. 1978. Virus replication in the digestive tract of 
ducks exposed by aerosol to type-A influenza. Avian diseases:367-377. 

40. Webster RG, Yakhno M, Hinshaw VS, Bean WJ, Murti KC. 1978. Intestinal 
influenza: replication and characterization of influenza viruses in ducks. Virology 
84:268-278. 

41. Stallknecht D, Shane S, Kearney M, Zwank P. 1990. Persistence of avian 
influenza viruses in water. Avian diseases:406-411. 

42. Ito T, Gorman OT, Kawaoka Y, Bean WJ, Webster RG. 1991. Evolutionary 
analysis of the influenza A virus M gene with comparison of the M1 and M2 
proteins. Journal of virology 65:5491-5498. 

43. Lin Y, Shu L, Wright S, Bean W, Sharp G, Shortridge K, Webster R. 1994. 
Analysis of the influenza virus gene pool of avian species from southern China. 
Virology 198:557-566. 

44. Donis RO, Bean WJ, Kawaoka Y, Webster RG. 1989. Distinct lineages of 
influenza virus H4 hemagglutinin genes in different regions of the world. 
Virology 169:408-417. 

45. Widjaja L, Krauss SL, Webby RJ, Xie T, Webster RG. 2004. Matrix gene of 
influenza a viruses isolated from wild aquatic birds: ecology and emergence of 
influenza a viruses. Journal of virology 78:8771-8779. 

46. Winker K, Gibson DD. 2010. The Asia-to-America influx of avian influenza 
wild bird hosts is large. Avian diseases 54:477-482. 



www.manaraa.com

 

153 

47. Koehler AV, Pearce JM, Flint PL, Franson JC, Ip HS. 2008. Genetic evidence 
of intercontinental movement of avian influenza in a migratory bird: the northern 
pintail (Anas acuta). Molecular Ecology 17:4754-4762. 

48. Dugan VG, Chen R, Spiro DJ, Sengamalay N, Zaborsky J, Ghedin E, Nolting 
J, Swayne DE, Runstadler JA, Happ GM. 2008. The evolutionary genetics and 
emergence of avian influenza viruses in wild birds. PLoS Pathog 4:e1000076. 

49. Webby R, Woolcock P, Krauss S, Walker D, Chin P, Shortridge K, Webster 
R. 2003. Multiple genotypes of nonpathogenic H6N2 influenza viruses isolated 
from chickens in California. Avian diseases 47:905-910. 

50. Woolcock P, Suarez D, Kuney D. 2003. Low-pathogenicity avian influenza 
virus (H6N2) in chickens in California, 2000-02. Avian diseases 47:872-881. 

51. Halvorson D. 2002, p 65-69. Proceedings of the 53rd north central avian disease 
conference, Minneapolis, 6-8 October 2002. 

52. Halvorson D, Kelleher C, Senne D. 1985. Epizootiology of avian influenza: 
effect of season on incidence in sentinel ducks and domestic turkeys in 
Minnesota. Applied and environmental microbiology 49:914-919. 

53. Swayne D, Beck J, Garcia M, Stone H. 1999. Influence of virus strain and 
antigen mass on efficacy of H5 avian influenza inactivated vaccines. Avian 
Pathology 28:245-255. 

54. Suarez D, Schultz-Cherry S. 2000. Immunology of avian influenza virus: a 
review. Developmental & Comparative Immunology 24:269-283. 

55. Webster RG, Rott R. 1987. Influenza virus A pathogenicity: the pivotal role of 
hemagglutinin. Cell 50:665-666. 

56. Lee C-W, Saif YM. 2009. Avian influenza virus. Comparative immunology, 
microbiology and infectious diseases 32:301-310. 

57. Eagles D, Siregar E, Dung D, Weaver J, Wong F, Daniels P. 2009. H5N1 
highly pathogenic avian influenza in Southeast Asia. Revue scientifique et 
technique 28:341. 

58. Cattoli G, Fusaro A, Monne I, Capua I. 2009. H5N1 virus evolution in 
Europe—an updated overview. Viruses 1:1351-1363. 

59. Alexander DJ. 2007. Summary of avian influenza activity in Europe, Asia, 
Africa, and Australasia, 2002-2006. Avian diseases 51:161-166. 



www.manaraa.com

 

154 

60. Suarez DL, Senne DA, Banks J, Brown IH, Essen SC, Lee C-W, Manvell RJ, 
Mathieu-Benson C, Moreno V, Pedersen JC. 2004. Recombination resulting in 
virulence shift in avian influenza outbreak, Chile. Emerg Infect Dis 10:693-699. 

61. Hirst M, Astell CR, Griffith M, Coughlin SM, Moksa M, Zeng T, Smailus 
DE, Holt RA, Jones S, Marra MA. 2004. Novel avian influenza H7N3 strain 
outbreak, British Columbia. Emerging infectious diseases 10:2192. 

62. Berhane Y, Hisanaga T, Kehler H, Neufeld J, Manning L, Argue C, Handel 
K, Hooper-McGrevy K, Jonas M, Robinson J. 2009. Highly pathogenic avian 
influenza virus A (H7N3) in domestic poultry, Saskatchewan, Canada, 2007. 
Emerg Infect Dis 15:1492-1495. 

63. Maurer-Stroh S, Lee RT, Gunalan V, Eisenhaber F. 2013. The highly 
pathogenic H7N3 avian influenza strain from July 2012 in Mexico acquired an 
extended cleavage site through recombination with host 28S rRNA. Virology 
journal 10:1. 

64. Lopez-Martinez I, Balish A, Barrera-Badillo G, Jones J, Nuñez-García TE, 
Jang Y, Aparicio-Antonio R, Azziz-Baumgartner E, Belser JA, Ramirez-
Gonzalez JE. 2013. Highly pathogenic avian influenza A (H7N3) virus in poultry 
workers, Mexico, 2012. Emerging infectious diseases 19:1531. 

65. Lee Y-J, Kang H-M, Lee E-K, Song B-M, Jeong J, Kwon Y-K, Kim H-R, Lee 
K-J, Hong M-S, Jang I. 2014. Novel reassortant influenza A (H5N8) viruses, 
South Korea, 2014. Emerging infectious diseases 20:1087. 

66. Wu H, Peng X, Xu L, Jin C, Cheng L, Lu X, Xie T, Yao H, Wu N. 2014. 
Novel reassortant influenza A (H5N8) viruses in domestic ducks, eastern China. 
Emerging infectious diseases 20:1315. 

67. Ip HS, Torchetti MK, Crespo R, Kohrs P, DeBruyn P, Mansfield KG, 
Baszler T, Badcoe L, Bodenstein B, Shearn-Bochsler V. 2015. Novel Eurasian 
Highly Pathogenic Avian Influenza A H5 Viruses in Wild Birds, Washington, 
USA, 2014. Emerging infectious diseases 21:886. 

68. Clement T, Kutish GF, Nezworski J, Scaria J, Nelson E, Christopher-
Hennings J, Diel DG. 2015. Complete genome sequence of a highly pathogenic 
avian influenza virus (H5N2) associated with an outbreak in commercial 
chickens, Iowa, USA, 2015. Genome announcements 3:e00613-00615. 

69. Pasick J, Berhane Y, Joseph T, Bowes V, Hisanaga T, Handel K, 
Alexandersen S. 2015. Reassortant highly pathogenic influenza A H5N2 virus 
containing gene segments related to Eurasian H5N8 in British Columbia, Canada, 
2014. Scientific reports 5. 



www.manaraa.com

 

155 

70. Torchetti MK, Killian ML, Dusek RJ, Pedersen JC, Hines N, Bodenstein B, 
White CL, Ip HS. 2015. Novel H5 clade 2.3. 4.4 reassortant (H5N1) virus from a 
green-winged teal in Washington, USA. Genome announcements 3:e00195-
00115. 

71. Jhung MA, Nelson DI. 2015. Outbreaks of avian influenza A (H5N2),(H5N8), 
and (H5N1) among birds—United States, December 2014–January 2015. MMWR 
Morb Mortal Wkly Rep 64:111. 

72. Koen J. 1919. A practical method for field diagnosis of swine diseases. Am J Vet 
Med 14:468-470. 

73. Shope RE. 1931. Swine influenza III. Filtration experiments and etiology. The 
Journal of experimental medicine 54:373-385. 

74. Brown IH. 2000. The epidemiology and evolution of influenza viruses in pigs. 
Veterinary microbiology 74:29-46. 

75. Hinshaw VS, Bean WJ, Webster RG, Easterday B. 1978. The prevalence of 
influenza viruses in swine and the antigenic and genetic relatedness of influenza 
viruses from man and swine. Virology 84:51-62. 

76. Chambers T, Hinshaw VS, Kawaoka Y, Easterday B, Webster R. 1991. 
Influenza viral infection of swine in the United States 1988–1989. Archives of 
virology 116:261-265. 

77. Olsen C, Carey S, Hinshaw L, Karasin A. 2000. Virologic and serologic 
surveillance for human, swine and avian influenza virus infections among pigs in 
the north-central United States. Archives of virology 145:1399-1419. 

78. Olsen CW. 2002. The emergence of novel swine influenza viruses in North 
America. Virus research 85:199-210. 

79. Zhou NN, Senne DA, Landgraf JS, Swenson SL, Erickson G, Rossow K, Liu 
L, Yoon K-j, Krauss S, Webster RG. 1999. Genetic reassortment of avian, 
swine, and human influenza A viruses in American pigs. Journal of virology 
73:8851-8856. 

80. Vincent AL, Ma W, Lager KM, Janke BH, Richt JA. 2008. Swine influenza 
viruses: a North American perspective. Advances in virus research 72:127-154. 

81. Pensaert M, Ottis K, Vandeputte J, Kaplan MM, Bachmann P. 1981. 
Evidence for the natural transmission of influenza A virus from wild ducks to 
swine and its potential importance for man. Bulletin of the World Health 
Organization 59:75. 



www.manaraa.com

 

156 

82. Scholtissek C, Bürger H, Bachmann P, Hannoun C. 1983. Genetic relatedness 
of hemagglutinins of the H1 subtype of influenza A viruses isolated from swine 
and birds. Virology 129:521-523. 

83. Schultz U, Fitch WM, Ludwig S, Mandler J, Scholtissek C. 1991. Evolution of 
pig influenza viruses. Virology 183:61-73. 

84. Su S, Qi W, Chen J, Zhu W, Huang Z, Xie J, Zhang G. 2013. 
Seroepidemiological evidence of avian influenza A virus transmission to pigs in 
southern China. Journal of clinical microbiology 51:601-602. 

85. Guan Y, Shortridge K, Krauss S, Li P, Kawaoka Y, Webster R. 1996. 
Emergence of avian H1N1 influenza viruses in pigs in China. Journal of virology 
70:8041-8046. 

86. Hu Y, Liu X, Li S, Guo X, Yang Y, Jin M. 2012. Complete genome sequence of 
a novel H4N1 influenza virus isolated from a pig in central China. Journal of 
virology 86:13879-13879. 

87. Su S, Qi W-b, Chen J-d, Cao N, Zhu W-j, Yuan L-g, Wang H, Zhang G-h. 
2012. Complete genome sequence of an avian-like H4N8 swine influenza virus 
discovered in southern China. Journal of virology 86:9542-9542. 

88. He L, Zhao G, Zhong L, Liu Q, Duan Z, Gu M, Wang X, Liu X, Liu X. 2013. 
Isolation and characterization of two H5N1 influenza viruses from swine in 
Jiangsu Province of China. Archives of virology 158:2531-2541. 

89. Zhang G, Kong W, Qi W, Long L-P, Cao Z, Huang L, Qi H, Cao N, Wang 
W, Zhao F. 2011. Identification of an H6N6 swine influenza virus in southern 
China. Infection, Genetics and Evolution 11:1174-1177. 

90. Zhao G, Chen C, Huang J, Wang Y, Peng D, Liu X. 2013. Characterisation of 
one H6N6 influenza virus isolated from swine in China. Research in veterinary 
science 95:434-436. 

91. Cong YL, Pu J, Liu QF, Wang S, Zhang GZ, Zhang XL, Fan WX, Brown 
EG, Liu JH. 2007. Antigenic and genetic characterization of H9N2 swine 
influenza viruses in China. Journal of General Virology 88:2035-2041. 

92. Wang N, Zou W, Yang Y, Guo X, Hua Y, Zhang Q, Zhao Z, Jin M. 2012. 
Complete genome sequence of an H10N5 avian influenza virus isolated from pigs 
in central China. Journal of virology 86:13865-13866. 

93. Ito T, Couceiro JNS, Kelm S, Baum LG, Krauss S, Castrucci MR, Donatelli 
I, Kida H, Paulson JC, Webster RG. 1998. Molecular basis for the generation in 
pigs of influenza A viruses with pandemic potential. Journal of virology 72:7367-
7373. 



www.manaraa.com

 

157 

94. Scholtissek C. 1990. Pigs as ‘mixing vessels’ for the creation of new pandemic 
influenza A viruses. Medical Principles and Practice 2:65-71. 

95. Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions 
WM, Xu X, Skepner E, Deyde V. 2009. Antigenic and genetic characteristics of 
swine-origin 2009 A (H1N1) influenza viruses circulating in humans. science 
325:197-201. 

96. Scholtissek C, Rohde Wv, Von Hoyningen V, Rott R. 1978. On the origin of 
the human influenza virus subtypes H2N2 and H3N2. Virology 87:13-20. 

97. Schäffr JR, Kawaoka Y, Bean WJ, Süss J, Senne D, Webster RG. 1993. 
Origin of the pandemic 1957 H2 influenza A virus and the persistence of its 
possible progenitors in the avian reservoir. Virology 194:781-788. 

98. Kawaoka Y, Krauss S, Webster RG. 1989. Avian-to-human transmission of the 
PB1 gene of influenza A viruses in the 1957 and 1968 pandemics. Journal of 
virology 63:4603-4608. 

99. Kilbourne ED. 2006. Influenza pandemics of the 20th century. Emerging 
infectious diseases 12:9. 

100. Morens DM, Fauci AS. 2007. The 1918 influenza pandemic: insights for the 21st 
century. Journal of Infectious Diseases 195:1018-1028. 

101. Taubenberger JK, Reid AH, Lourens RM, Wang R, Jin G, Fanning TG. 
2005. Characterization of the 1918 influenza virus polymerase genes. Nature 
437:889-893. 

102. Taubenberger JK, Reid AH, Krafft AE, Bijwaard KE, Fanning TG. 1997. 
Initial genetic characterization of the 1918 “Spanish” influenza virus. Science 
275:1793-1796. 

103. Reid AH, Fanning TG, Hultin JV, Taubenberger JK. 1999. Origin and 
evolution of the 1918 “Spanish” influenza virus hemagglutinin gene. Proceedings 
of the National Academy of Sciences 96:1651-1656. 

104. Virus NS-OIAHN, Team I. 2009. Emergence of a novel swine-origin influenza 
A (H1N1) virus in humans. N Engl j Med 2009:2605-2615. 

105. Neumann G, Noda T, Kawaoka Y. 2009. Emergence and pandemic potential of 
swine-origin H1N1 influenza virus. Nature 459:931-939. 

106. Rambaut A, Holmes E. 2009. The early molecular epidemiology of the swine-
origin A/H1N1 human influenza pandemic. PLoS currents 1. 



www.manaraa.com

 

158 

107. Simonsen L, Spreeuwenberg P, Lustig R, Taylor RJ, Fleming DM, 
Kroneman M, Van Kerkhove MD, Mounts AW, Paget WJ. 2013. Global 
mortality estimates for the 2009 Influenza Pandemic from the GLaMOR project: a 
modeling study. PLoS Med 10:e1001558. 

108. Dapat IC, Dapat C, Baranovich T, Suzuki Y, Kondo H, Shobugawa Y, Saito 
R, Suzuki H, Group JICS. 2012. Genetic characterization of human influenza 
viruses in the pandemic (2009–2010) and post-pandemic (2010–2011) periods in 
Japan. PloS one 7:e36455. 

109. de la Rosa-Zamboni D, Vázquez-Pérez JA, Ávila-Ríos S, Carranco-Arenas 
AP, Ormsby CE, Cummings CA, Soto-Nava M, Hernández-Hernández VA, 
Orozco-Sánchez CO, Alvarado-de la Barrera C. 2012. Molecular 
characterization of the predominant influenza A (H1N1) pdm09 virus in Mexico, 
December 2011–February 2012. PloS one 7:e50116. 

110. Zehender G, Pariani E, Piralla A, Lai A, Gabanelli E, Ranghiero A, Ebranati 
E, Amendola A, Campanini G, Rovida F. 2012. Reconstruction of the 
evolutionary dynamics of the A (H1N1) pdm09 influenza virus in Italy during the 
pandemic and post-pandemic phases. PloS one 7:e47517. 

111. Trifonov V, Khiabanian H, Rabadan R. 2009. Geographic dependence, 
surveillance, and origins of the 2009 influenza A (H1N1) virus. New England 
Journal of Medicine 361:115-119. 

112. Smith GJ, Vijaykrishna D, Bahl J, Lycett SJ, Worobey M, Pybus OG, Ma 
SK, Cheung CL, Raghwani J, Bhatt S. 2009. Origins and evolutionary 
genomics of the 2009 swine-origin H1N1 influenza A epidemic. Nature 
459:1122-1125. 

113. Mena I, Nelson MI, Quezada-Monroy F, Dutta J, Cortes-Fernández R, Lara-
Puente JH, Castro-Peralta F, Cunha LF, Trovão NS, Lozano-Dubernard B. 
2016. Origins of the 2009 H1N1 influenza pandemic in swine in Mexico. eLife 
5:e16777. 

114. Heldt FS, Kupke SY, Dorl S, Reichl U, Frensing T. 2015. Single-cell analysis 
and stochastic modelling unveil large cell-to-cell variability in influenza A virus 
infection. Nature communications 6. 

115. Domingo E, Martínez-Salas E, Sobrino F, de la Torre JC, Portela A, Ortín J, 
López-Galindez C, Pérez-Breña P, Villanueva N, Nájera R. 1985. The 
quasispecies (extremely heterogeneous) nature of viral RNA genome populations: 
biological relevance—a review. Gene 40:1-8. 

116. Lauring AS, Andino R. 2010. Quasispecies theory and the behavior of RNA 
viruses. PLoS Pathog 6:e1001005. 



www.manaraa.com

 

159 

117. Holland J, Spindler K, Horodyski F, Grabau E, Nichol S, VandePol S. 1982. 
Rapid evolution of RNA genomes. Science 215:1577-1585. 

118. Wille M, Tolf C, Avril A, Latorre-Margalef N, Wallerström S, Olsen B, 
Waldenström J. 2013. Frequency and patterns of reassortment in natural 
influenza A virus infection in a reservoir host. Virology 443:150-160. 

119. Hatchette TF, Walker D, Johnson C, Baker A, Pryor SP, Webster RG. 2004. 
Influenza A viruses in feral Canadian ducks: extensive reassortment in nature. 
Journal of General Virology 85:2327-2337. 

120. Rambaut A, Pybus OG, Nelson MI, Viboud C, Taubenberger JK, Holmes 
EC. 2008. The genomic and epidemiological dynamics of human influenza A 
virus. Nature 453:615-619. 

121. Holmes EC, Ghedin E, Miller N, Taylor J, Bao Y, St George K, Grenfell BT, 
Salzberg SL, Fraser CM, Lipman DJ. 2005. Whole-genome analysis of human 
influenza A virus reveals multiple persistent lineages and reassortment among 
recent H3N2 viruses. PLoS Biol 3:e300. 

122. Boni MF, Zhou Y, Taubenberger JK, Holmes EC. 2008. Homologous 
recombination is very rare or absent in human influenza A virus. Journal of 
virology 82:4807-4811. 

123. Pasick J, Handel K, Robinson J, Copps J, Ridd D, Hills K, Kehler H, 
Cottam-Birt C, Neufeld J, Berhane Y. 2005. Intersegmental recombination 
between the haemagglutinin and matrix genes was responsible for the emergence 
of a highly pathogenic H7N3 avian influenza virus in British Columbia. Journal 
of General Virology 86:727-731. 

124. Kida H, Kawaoka Y, Naeve CW, Webster RG. 1987. Antigenic and genetic 
conservation of H3 influenza virus in wild ducks. Virology 159:109-119. 

125. Bailey E, Long L, Zhao N, Hall JS, Baroch JA, Nolting J, Senter L, 
Cunningham FL, Pharr GT, Hanson L. 2016. Antigenic Characterization of H3 
Subtypes of Avian Influenza A Viruses from North America. Avian Diseases. 

126. Fitch WM, Bush RM, Bender CA, Cox NJ. 1997. Long term trends in the 
evolution of H (3) HA1 human influenza type A. Proceedings of the National 
Academy of Sciences 94:7712-7718. 

127. Lewis NS, Anderson TK, Kitikoon P, Skepner E, Burke DF, Vincent AL. 
2014. Substitutions near the hemagglutinin receptor-binding site determine the 
antigenic evolution of influenza A H3N2 viruses in US swine. Journal of virology 
88:4752-4763. 



www.manaraa.com

 

160 

128. Suarez DL. 2000. Evolution of avian influenza viruses. Veterinary microbiology 
74:15-27. 

129. Suarez DL, Garcia M, Latimer J, Senne D, Perdue M. 1999. Phylogenetic 
analysis of H7 avian influenza viruses isolated from the live bird markets of the 
Northeast United States. Journal of virology 73:3567-3573. 

130. Smith DJ, Lapedes AS, de Jong JC, Bestebroer TM, Rimmelzwaan GF, 
Osterhaus AD, Fouchier RA. 2004. Mapping the antigenic and genetic evolution 
of influenza virus. Science 305:371-376. 

131. Sun H, Yang J, Zhang T, Long L-P, Jia K, Yang G, Webby RJ, Wan X-F. 
2013. Using sequence data to infer the antigenicity of influenza virus. MBio 
4:e00230-00213. 

132. Logan W, MacKay D. 1951. Development of influenza epidemics. The Lancet 
257:284-287. 

133. Isaacs A, Gledhill A, Andrewes CH. 1952. Influenza A viruses: laboratory 
studies, with special reference to European outbreak of 1950-1. Bulletin of the 
World Health Organization 6:287. 

134. Rasmussen A, STOKES JC, SMADEL JE. 1948. The army experience with 
influenza, 1946–1947. II. Laboratory aspects. American Journal of Epidemiology 
47:142-149. 

135. Kendal AP, Noble GR, Skehel JJ, Dowdle WR. 1978. Antigenic similarity of 
influenza A (H1N1) viruses from epidemics in 1977–1978 to “Scandinavian” 
strains isolated in epidemics of 1950–1951. Virology 89:632-636. 

136. Scholtissek C, Von Hoyningen V, Rott R. 1978. Genetic relatedness between 
the new 1977 epidemic strains (H1N1) of influenza and human influenza strains 
isolated between 1947 and 1957 (H1N1). Virology 89:613-617. 

137. Hay AJ, Gregory V, Douglas AR, Lin YP. 2001. The evolution of human 
influenza viruses. Philos Trans R Soc Lond B Biol Sci 356:1861-1870. 

138. Medina RA, Stertz S, Manicassamy B, Zimmermann P, Sun X, Albrecht RA, 
Uusi-Kerttula H, Zagordi O, Belshe RB, Frey SE. 2013. Glycosylations in the 
globular head of the hemagglutinin protein modulate the virulence and antigenic 
properties of the H1N1 influenza viruses. Science translational medicine 
5:187ra170-187ra170. 

139. Dea S, Bilodeau R, Sauvageau R, Montpetit C, Martineau G. 1992. Antigenic 
variant of swine influenza virus causing proliferative and necrotizing pneumonia 
in pigs. Journal of Veterinary Diagnostic Investigation 4:380-392. 



www.manaraa.com

 

161 

140. Olsen C, McGregor M, Cooley A, Schantz B, Hotze B, Hinshaw V. 1993. 
Antigenic and genetic analysis of a recently isolated H1N1 swine influenza virus. 
American journal of veterinary research 54:1630-1636. 

141. Rekik M, Arora D, Dea S. 1994. Genetic variation in swine influenza virus A 
isolate associated with proliferative and necrotizing pneumonia in pigs. Journal of 
clinical microbiology 32:515-518. 

142. Lorusso A, Vincent AL, Harland ML, Alt D, Bayles DO, Swenson SL, 
Gramer MR, Russell CA, Smith DJ, Lager KM. 2011. Genetic and antigenic 
characterization of H1 influenza viruses from United States swine from 2008. 
Journal of General Virology 92:919-930. 

143. Feng Z, Gomez J, Bowman AS, Ye J, Long L-P, Nelson SW, Yang J, Martin 
B, Jia K, Nolting JM. 2013. Antigenic characterization of H3N2 influenza A 
viruses from Ohio agricultural fairs. Journal of virology:JVI. 00804-00813. 

144. De Jong J, Van Nieuwstadt A, Kimman T, Loeffen W, Bestebroer T, Bijlsma 
K, Verweij C, Osterhaus A, Claas E. 1999. Antigenic drift in swine influenza 
H3 haemagglutinins with implications for vaccination policy. Vaccine 17:1321-
1328. 

145. De Jong J, Smith D, Lapedes A, Donatelli I, Campitelli L, Barigazzi G, Van 
Reeth K, Jones T, Rimmelzwaan G, Osterhaus A. 2007. Antigenic and genetic 
evolution of swine influenza A (H3N2) viruses in Europe. Journal of virology 
81:4315-4322. 

146. Vines A, Wells K, Matrosovich M, Castrucci MR, Ito T, Kawaoka Y. 1998. 
The role of influenza A virus hemagglutinin residues 226 and 228 in receptor 
specificity and host range restriction. Journal of virology 72:7626-7631. 

147. Connor RJ, Kawaoka Y, Webster RG, Paulson JC. 1994. Receptor specificity 
in human, avian, and equine H2 and H3 influenza virus isolates. Virology 205:17-
23. 

148. Matrosovich M, Tuzikov A, Bovin N, Gambaryan A, Klimov A, Castrucci 
MR, Donatelli I, Kawaoka Y. 2000. Early alterations of the receptor-binding 
properties of H1, H2, and H3 avian influenza virus hemagglutinins after their 
introduction into mammals. Journal of virology 74:8502-8512. 

149. Banks J, Speidel E, Moore E, Plowright L, Piccirillo A, Capua I, Cordioli P, 
Fioretti A, Alexander D. 2001. Changes in the haemagglutinin and the 
neuraminidase genes prior to the emergence of highly pathogenic H7N1 avian 
influenza viruses in Italy. Archives of virology 146:963-973. 



www.manaraa.com

 

162 

150. Campitelli L, Mogavero E, De Marco MA, Delogu M, Puzelli S, Frezza F, 
Facchini M, Chiapponi C, Foni E, Cordioli P. 2004. Interspecies transmission 
of an H7N3 influenza virus from wild birds to intensively reared domestic poultry 
in Italy. Virology 323:24-36. 

151. Mitnaul LJ, Matrosovich MN, Castrucci MR, Tuzikov AB, Bovin NV, 
Kobasa D, Kawaoka Y. 2000. Balanced hemagglutinin and neuraminidase 
activities are critical for efficient replication of influenza A virus. Journal of 
virology 74:6015-6020. 

152. Zhang H, Li X, Guo J, Li L, Chang C, Li Y, Bian C, Xu K, Chen H, Sun B. 
2014. The PB2 E627K mutation contributes to the high polymerase activity and 
enhanced replication of H7N9 influenza virus. Journal of General Virology 
95:779-786. 

153. Hatta M, Gao P, Halfmann P, Kawaoka Y. 2001. Molecular basis for high 
virulence of Hong Kong H5N1 influenza A viruses. Science 293:1840-1842. 

154. de Wit E, Munster VJ, van Riel D, Beyer WE, Rimmelzwaan GF, Kuiken T, 
Osterhaus AD, Fouchier RA. 2010. Molecular determinants of adaptation of 
highly pathogenic avian influenza H7N7 viruses to efficient replication in the 
human host. Journal of virology 84:1597-1606. 

155. Li Z, Chen H, Jiao P, Deng G, Tian G, Li Y, Hoffmann E, Webster RG, 
Matsuoka Y, Yu K. 2005. Molecular basis of replication of duck H5N1 influenza 
viruses in a mammalian mouse model. Journal of virology 79:12058-12064. 

156. Stöhr K. 2003. The global agenda on influenza surveillance and control. Vaccine 
21:1744-1748. 

157. Salk JE, Suriano PC. 1949. Importance of Antigenic Composition of Influenza 
Virus Vaccine in Protecting against the Natural Disease*†: Observations during 
the Winter of 1947-1948. American Journal of Public Health and the Nations 
Health 39:345-355. 

158. Krammer F, Palese P. 2015. Advances in the development of influenza virus 
vaccines. Nature reviews Drug discovery 14:167-182. 

159. Allison JE, Glezen WP, Taber LH, Paredes A, Webster RG. 1977. 
Reactogenicity and immunogenicity of bivalent influenza A and monovalent 
influenza B virus vaccines in high-risk children. Journal of Infectious Diseases 
136:S672-S676. 

160. Russell CA, Jones TC, Barr IG, Cox NJ, Garten RJ, Gregory V, Gust ID, 
Hampson AW, Hay AJ, Hurt AC. 2008. Influenza vaccine strain selection and 
recent studies on the global migration of seasonal influenza viruses. Vaccine 
26:D31-D34. 



www.manaraa.com

 

163 

161. Xie H, Wan X-F, Ye Z, Plant EP, Zhao Y, Xu Y, Li X, Finch C, Zhao N, 
Kawano T. 2015. H3N2 Mismatch of 2014–15 Northern Hemisphere Influenza 
Vaccines and Head-to-head Comparison between Human and Ferret Antisera 
derived Antigenic Maps. Scientific reports 5. 

162. Li Y, Myers JL, Bostick DL, Sullivan CB, Madara J, Linderman SL, Liu Q, 
Carter DM, Wrammert J, Esposito S. 2013. Immune history shapes specificity 
of pandemic H1N1 influenza antibody responses. The Journal of experimental 
medicine 210:1493-1500. 

163. Hensley SE. 2014. Challenges of selecting seasonal influenza vaccine strains for 
humans with diverse pre-exposure histories. Current opinion in virology 8:85-89. 

164. Villarreal C. 2005. Control and eradication strategies of avian influenza in 
Mexico. Developments in biologicals 124:125-126. 

165. Swayne DE. 2012. Impact of vaccines and vaccination on global control of avian 
influenza. Avian diseases 56:818-828. 

166. Cattoli G, Fusaro A, Monne I, Coven F, Joannis T, El-Hamid HSA, Hussein 
AA, Cornelius C, Amarin NM, Mancin M. 2011. Evidence for differing 
evolutionary dynamics of A/H5N1 viruses among countries applying or not 
applying avian influenza vaccination in poultry. Vaccine 29:9368-9375. 

167. Villareal C, Flores A. 2003. The Mexican avian influenza (H5N2) outbreak. 
Avian Diseases 47:18-22. 

168. Lee C-W, Senne DA, Suarez DL. 2004. Effect of vaccine use in the evolution of 
Mexican lineage H5N2 avian influenza virus. Journal of virology 78:8372-8381. 

169. Beato MS, Xu Y, Long L-P, Capua I, Wan X-F. 2014. Antigenic and Genetic 
Evolution of Low-Pathogenicity Avian Influenza Viruses of Subtype H7N3 
following Heterologous Vaccination. Clinical and Vaccine Immunology 21:603-
612. 

170. Chen H, Yuan H, Gao R, Zhang J, Wang D, Xiong Y, Fan G, Yang F, Li X, 
Zhou J. 2014. Clinical and epidemiological characteristics of a fatal case of avian 
influenza A H10N8 virus infection: a descriptive study. The Lancet 383:714-721. 

171. Shortridge Kt, Stuart-Harris C. 1982. An influenza epicentre? The Lancet 
320:812-813. 

172. Huang K, Bahl J, Fan X, Vijaykrishna D, Cheung C, Webby R, Webster R, 
Chen H, Smith GJ, Peiris J. 2010. Establishment of an H6N2 influenza virus 
lineage in domestic ducks in southern China. Journal of virology 84:6978-6986. 



www.manaraa.com

 

164 

173. Webster RG. 2004. Wet markets—a continuing source of severe acute 
respiratory syndrome and influenza? The Lancet 363:234-236. 

174. Shortridge K. 1982. Avian influenza A viruses of southern China and Hong 
Kong: ecological aspects and implications for man. Bulletin of the World Health 
Organization 60:129. 

175. Huang K, Zhu H, Fan X, Wang J, Cheung C-L, Duan L, Hong W, Liu Y, Li 
L, Smith DK. 2012. Establishment and lineage replacement of H6 influenza 
viruses in domestic ducks in southern China. Journal of virology:JVI. 06389-
06311. 

176. Peiris M, Yuen K, Leung C, Chan K, Ip P, Lai R, Orr W, Shortridge K. 
1999. Human infection with influenza H9N2. The Lancet 354:916-917. 

177. Gao R, Cao B, Hu Y, Feng Z, Wang D, Hu W, Chen J, Jie Z, Qiu H, Xu K. 
2013. Human infection with a novel avian-origin influenza A (H7N9) virus. New 
England Journal of Medicine 368:1888-1897. 

178. Senne D, Pearson J, Panigrahy B. 2003. Live poultry markets: a missing link in 
the epidemiology of avian influenza. Avian Diseases:50-58. 

179. Cardona C, Yee K, Carpenter T. 2009. Are live bird markets reservoirs of avian 
influenza? Poultry science 88:856-859. 

180. Suarez DL, Senne DA. 2000. Sequence analysis of related low-pathogenic and 
highly pathogenic H5N2 avian influenza isolates from United States live bird 
markets and poultry farms from 1983 to 1989. Avian diseases:356-364. 

181. Spackman E, Senne DA, Davison S, Suarez DL. 2003. Sequence analysis of 
recent H7 avian influenza viruses associated with three different outbreaks in 
commercial poultry in the United States. Journal of virology 77:13399-13402. 

182. Wan X-F, Dong L, Lan Y, Long L-P, Xu C, Zou S, Li Z, Wen L, Cai Z, Wang 
W. 2011. Indications that live poultry markets are a major source of human H5N1 
influenza virus infection in China. Journal of virology 85:13432-13438. 

183. Mounts AW, Kwong H, Izurieta HS, Ho Y-y, Au T-k, Lee M, Bridges CB, 
Williams SW, Mak KH, Katz JM. 1999. Case-control study of risk factors for 
avian influenza A (H5N1) disease, Hong Kong, 1997. Journal of Infectious 
Diseases 180:505-508. 

184. Zhou L, Liao Q, Dong L, Huai Y, Bai T, Xiang N, Shu Y, Liu W, Wang S, 
Qin P. 2009. Risk factors for human illness with avian influenza A (H5N1) virus 
infection in China. Journal of Infectious Diseases 199:1726-1734. 



www.manaraa.com

 

165 

185. Liu D, Shi W, Shi Y, Wang D, Xiao H, Li W, Bi Y, Wu Y, Li X, Yan J. 2013. 
Origin and diversity of novel avian influenza A H7N9 viruses causing human 
infection: phylogenetic, structural, and coalescent analyses. The Lancet 381:1926-
1932. 

186. Yu H, Wu JT, Cowling BJ, Liao Q, Fang VJ, Zhou S, Wu P, Zhou H, Lau 
EH, Guo D. 2014. Effect of closure of live poultry markets on poultry-to-person 
transmission of avian influenza A H7N9 virus: an ecological study. The Lancet 
383:541-548. 

187. Wu P, Jiang H, Wu JT, Chen E, He J, Zhou H, Wei L, Yang J, Yang B, Qin 
Y. 2014. Poultry market closures and human infection with influenza A (H7N9) 
virus, China, 2013–14. Emerg Infect Dis 20:1891-1894. 

188. Garcia M, Crawford JM, Latimer JW, Rivera-Cruz E, Perdue ML. 1996. 
Heterogeneity in the haemagglutinin gene and emergence of the highly 
pathogenic phenotype among recent H5N2 avian influenza viruses from Mexico. 
Journal of General Virology 77:1493-1504. 

189. Capua I, Mutinelli F, Marangon S, Alexander DJ. 2000. H7N1 avian influenza 
in Italy (1999 to 2000) in intensively reared chickens and turkeys. Avian 
Pathology 29:537-543. 

190. Kawaoka Y, Webster RG. 1985. Evolution of the A/Chicken/Pennsylvania/83 
(H5N2) influenza virus. Virology 146:130-137. 

191. Horimoto T, Rivera E, Pearson J, Senne D, Krauss S, Kawaoka Y, Webster 
R. 1995. Origin and molecular changes associated with emergence of a highly 
pathogenic H5N2 influenza virus in Mexico. Virology 213:223-230. 

192. Tweed SA, Skowronski DM, David ST, Larder A, Petric M, Lees W, Li Y, 
Katz J, Krajden M, Tellier R. 2004. Human illness from avian influenza H7N3, 
British Columbia. Emerg Infect Dis 10:2196-2199. 

193. Fouchier RA, Schneeberger PM, Rozendaal FW, Broekman JM, Kemink SA, 
Munster V, Kuiken T, Rimmelzwaan GF, Schutten M, van Doornum GJ. 
2004. Avian influenza A virus (H7N7) associated with human conjunctivitis and a 
fatal case of acute respiratory distress syndrome. Proceedings of the National 
Academy of sciences of the United States of América 101:1356-1361. 

194. Krauss S, Stucker KM, Schobel SA, Danner A, Friedman K, Knowles JP, 
Kayali G, Niles LJ, Dey AD, Raven G. 2015. Long-term surveillance of H7 
influenza viruses in American wild aquatic birds: are the H7N3 influenza viruses 
in wild birds the precursors of highly pathogenic strains in domestic 
poultry&quest. Emerging Microbes & Infections 4:e35. 



www.manaraa.com

 

166 

195. Munster VJ, Wallensten A, Baas C, Rimmelzwaan GF, Schutten M, Olsen B, 
Osterhaus AD, Fouchier RA. 2005. Mallards and highly pathogenic avian 
influenza ancestral viruses, northern Europe. Emerging infectious diseases 
11:1545-1551. 

196. Campitelli L, Di Martino A, Spagnolo D, Smith GJ, Di Trani L, Facchini M, 
De Marco MA, Foni E, Chiapponi C, Martin AM. 2008. Molecular analysis of 
avian H7 influenza viruses circulating in Eurasia in 1999–2005: detection of 
multiple reassortant virus genotypes. Journal of general virology 89:48-59. 

197. Andrews S. 2010. FastQC: A quality control tool for high throughput sequence 
data. Reference Source. 

198. Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for 
Illumina sequence data. Bioinformatics:btu170. 

199. Langmead B, Salzberg SL. 2012. Fast gapped-read alignment with Bowtie 2. 
Nature methods 9:357-359. 

200. Zerbino DR, Birney E. 2008. Velvet: algorithms for de novo short read assembly 
using de Bruijn graphs. Genome research 18:821-829. 

201. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. 1990. Basic local 
alignment search tool. Journal of molecular biology 215:403-410. 

202. Ostrowsky B, Huang A, Terry W, Anton D, Brunagel B, Traynor L, Abid S, 
Johnson G, Kacica M, Katz J. 2012. Low pathogenic avian influenza A (H7N2) 
virus infection in immunocompromised adult, New York, USA, 2003. Emerging 
infectious diseases 18:1128. 

203. Butt K, Smith GJ, Chen H, Zhang L, Leung YC, Xu K, Lim W, Webster RG, 
Yuen K, Peiris JM. 2005. Human infection with an avian H9N2 influenza A 
virus in Hong Kong in 2003. Journal of clinical microbiology 43:5760-5767. 

204. Huang Y, Li X, Zhang H, Chen B, Jiang Y, Yang L, Zhu W, Hu S, Zhou S, 
Tang Y. 2015. Human infection with an avian influenza A (H9N2) virus in the 
middle region of China. Journal of medical virology 87:1641-1648. 

205. Spackman E, Senne DA, Myers TJ, Bulaga LL, Garber LP, Perdue ML, 
Lohman K, Daum LT, Suarez DL. 2002. Development of a real-time reverse 
transcriptase PCR assay for type A influenza virus and the avian H5 and H7 
hemagglutinin subtypes. J Clin Microbiol 40:3256-3260. 

206. Hoffmann E, Stech J, Guan Y, Webster RG, Perez DR. 2001. Universal primer 
set for the full-length amplification of all influenza A viruses. Arch Virol 
146:2275-2289. 



www.manaraa.com

 

167 

207. Zwickl D. 2006. GARLI, vers. 0.951. Genetic algorithm approaches for the 
phylogenetic analysis of large biological sequence datasets under the maximum 
likelihood criterion. Ph. D. dissertation, University of Texas, Austin, Texas, USA. 

208. Hurt AC, Holien JK, Parker MW, Barr IG. 2009. Oseltamivir resistance and 
the H274Y neuraminidase mutation in seasonal, pandemic and highly pathogenic 
influenza viruses. Drugs 69:2523-2531. 

209. Hay A, Wolstenholme A, Skehel J, Smith MH. 1985. The molecular basis of 
the specific anti-influenza action of amantadine. The EMBO journal 4:3021. 

210. Wan X-F, Carrel M, Long L-P, Alker AP, Emch M. 2013. Perspective on 
emergence and re-emergence of amantadine resistant influenza A viruses in 
domestic animals in China. Infection, Genetics and Evolution 20:298-303. 

211. Shinya K, Hamm S, Hatta M, Ito H, Ito T, Kawaoka Y. 2004. PB2 amino acid 
at position 627 affects replicative efficiency, but not cell tropism, of Hong Kong 
H5N1 influenza A viruses in mice. Virology 320:258-266. 

212. Guo X, Liao M, Xin C. 2003. Sequence of HA gene of avian influenza 
A/Chicken/Guangdong/SS/1994 (H9N2) virus. Avian diseases 47:1118-1121. 

213. Li C, Yu K, Tian G, Yu D, Liu L, Jing B, Ping J, Chen H. 2005. Evolution of 
H9N2 influenza viruses from domestic poultry in Mainland China. Virology 
340:70-83. 

214. Choi Y, Ozaki H, Webby R, Webster R, Peiris J, Poon L, Butt C, Leung Y, 
Guan Y. 2004. Continuing evolution of H9N2 influenza viruses in Southeastern 
China. Journal of virology 78:8609-8614. 

215. Xu K, Smith G, Bahl J, Duan L, Tai H, Vijaykrishna D, Wang J, Zhang J, Li 
K, Fan X. 2007. The genesis and evolution of H9N2 influenza viruses in poultry 
from southern China, 2000 to 2005. Journal of virology 81:10389-10401. 

216. Sun Y, Pu J, Jiang Z, Guan T, Xia Y, Xu Q, Liu L, Ma B, Tian F, Brown E. 
2010. Genotypic evolution and antigenic drift of H9N2 influenza viruses in China 
from 1994 to 2008. Veterinary microbiology 146:215-225. 

217. Guan Y, Shortridge K, Krauss S, Chin P, Dyrting K, Ellis T, Webster R, 
Peiris M. 2000. H9N2 influenza viruses possessing H5N1-like internal genomes 
continue to circulate in poultry in southeastern China. Journal of virology 
74:9372-9380. 

218. Lin Y, Shaw M, Gregory V, Cameron K, Lim W, Klimov A, Subbarao K, 
Guan Y, Krauss S, Shortridge K. 2000. Avian-to-human transmission of H9N2 
subtype influenza A viruses: relationship between H9N2 and H5N1 human 
isolates. Proceedings of the National Academy of Sciences 97:9654-9658. 



www.manaraa.com

 

168 

219. Xu Y, Bailey E, Spackman E, Li T, Wang H, Long L-P, Baroch JA, 
Cunningham FL, Lin X, Jarman RG, DeLiberto TJ, Wan X-F. 2016. Limited 
Antigenic Diversity in Contemporary H7 Avian-Origin Influenza A Viruses from 
North America. Scientific Reports 6:20688. 

220. Squires RB, Noronha J, Hunt V, García‐Sastre A, Macken C, Baumgarth 
N, Suarez D, Pickett BE, Zhang Y, Larsen CN. 2012. Influenza research 
database: an integrated bioinformatics resource for influenza research and 
surveillance. Influenza and other respiratory viruses 6:404-416. 

221. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and 
post-analysis of large phylogenies. Bioinformatics:btu033. 

222. Edgar RC. 2004. MUSCLE: multiple sequence alignment with high accuracy and 
high throughput. Nucleic acids research 32:1792-1797. 

223. Drummond AJ, Suchard MA, Xie D, Rambaut A. 2012. Bayesian 
phylogenetics with BEAUti and the BEAST 1.7. Molecular biology and evolution 
29:1969-1973. 

224. Yang J, Grünewald S, Xu Y, Wan X-F. 2014. Quartet-based methods to 
reconstruct phylogenetic networks. BMC systems biology 8:1. 

225. Krauss S, Walker D, Pryor SP, Niles L, Chenghong L, Hinshaw VS, Webster 
RG. 2004. Influenza A viruses of migrating wild aquatic birds in North America. 
Vector-Borne & Zoonotic Diseases 4:177-189. 

226. Stallknecht DE, Goekjian VH, Wilcox BR, Poulson RL, Brown JD. 2010. 
Avian influenza virus in aquatic habitats: what do we need to learn? Avian 
diseases 54:461-465. 

227. Ma W, Lager KM, Lekcharoensuk P, Ulery ES, Janke BH, Solorzano A, 
Webby RJ, García-Sastre A, Richt JA. 2010. Viral reassortment and 
transmission after co-infection of pigs with classical H1N1 and triple-reassortant 
H3N2 swine influenza viruses. Journal of General Virology 91:2314-2321. 

228. Bahl J, Krauss S, Kühnert D, Fourment M, Raven G, Pryor SP, Niles LJ, 
Danner A, Walker D, Mendenhall IH. 2013. Influenza A virus migration and 
persistence in North American wild birds. PLoS Pathog 9:e1003570. 

229. Lam TTY, Ip HS, Ghedin E, Wentworth DE, Halpin RA, Stockwell TB, 
Spiro DJ, Dusek RJ, Bortner JB, Hoskins J. 2012. Migratory flyway and 
geographical distance are barriers to the gene flow of influenza virus among 
North American birds. Ecology letters 15:24-33. 



www.manaraa.com

 

169 

230. Bevins SN, Pedersen K, Lutman MW, Baroch JA, Schmit BS, Kohler D, 
Gidlewski T, Nolte DL, Swafford SR, DeLiberto TJ. 2014. Large-scale avian 
influenza surveillance in wild birds throughout the United States. PloS one 
9:e104360. 

231. Naeem K, Hussain M. 1995. An outbreak of avian influenza in poultry in 
Pakistan. Veterinary record 137:439-439. 

232. Naeem K, Siddique N, Ayaz M, Jalalee M. 2007. Avian influenza in Pakistan: 
outbreaks of low-and high-pathogenicity avian influenza in Pakistan during 2003-
2006. Avian diseases 51:189-193. 

233. Koopmans M, Wilbrink B, Conyn M, Natrop G, van der Nat H, Vennema H, 
Meijer A, van Steenbergen J, Fouchier R, Osterhaus A. 2004. Transmission of 
H7N7 avian influenza A virus to human beings during a large outbreak in 
commercial poultry farms in the Netherlands. The Lancet 363:587-593. 

234. Lam TT-Y, Wang J, Shen Y, Zhou B, Duan L, Cheung C-L, Ma C, Lycett SJ, 
Leung CY-H, Chen X. 2013. The genesis and source of the H7N9 influenza 
viruses causing human infections in China. Nature 502:241-244. 

235. Dudley JP, Mackay IM. 2013. Age-specific and sex-specific morbidity and 
mortality from avian influenza A (H7N9). Journal of Clinical Virology 58:568-
570. 

236. Selleck P, Arzey G, Kirkland P, Reece R, Gould A, Daniels P, Westbury H. 
2003. An outbreak of highly pathogenic avian influenza in Australia in 1997 
caused by an H7N4 virus. Avian diseases 47:806-811. 

237. Werner O, Starick E, Grund C. 2003. Isolation and characterization of a low-
pathogenicity H7N7 influenza virus from a turkey in a small mixed free-range 
poultry flock in Germany. Avian diseases 47:1104-1106. 

238. Team EE. 2007. Avian influenza A/(H7N2) outbreak in the United Kingdom. 
Euro Surveill 12:E070531. 

239. Berhane Y, Hisanaga T, Kehler H, Neufeld J, Manning L, Argue C, Handel 
K, Hooper-McGrevy K, Jonas M, Robinson J. 2009. Highly pathogenic avian 
influenza virus A (H7N3) in domestic poultry, Saskatchewan, Canada, 2007. 
Emerging infectious diseases 15:1492. 

240. Wainwrighta S, Trevenneca C, Claesa F. 2012. Highly pathogenic avian 
influenza in Mexico (H7N3): a significant threat to poultry production not to be 
underestimated. Empres Watch 26. 



www.manaraa.com

 

170 

241. Tweed SA, Skowronski DM, David ST, Larder A, Petric M, Lees W, Li Y, 
Katz J, Krajden M, Tellier R. 2004. Human illness from avian influenza H7N3, 
British Columbia. Emerging infectious diseases 10:2196. 

242. Hoffmann E, Stech J, Guan Y, Webster R, Perez D. 2001. Universal primer set 
for the full-length amplification of all influenza A viruses. Archives of virology 
146:2275-2289. 

243. Bao Y, Bolotov P, Dernovoy D, Kiryutin B, Zaslavsky L, Tatusova T, Ostell 
J, Lipman D. 2008. The influenza virus resource at the National Center for 
Biotechnology Information. Journal of virology 82:596-601. 

244. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz 
G, Mesirov JP. 2011. Integrative genomics viewer. Nature biotechnology 29:24-
26. 

245. Stamatakis A. 2014. RAxML version 8: a tool for phylogenetic analysis and 
post-analysis of large phylogenies. Bioinformatics 30:1312-1313. 

246. Yang Z. 2007. PAML 4: phylogenetic analysis by maximum likelihood. 
Molecular biology and evolution 24:1586-1591. 

247. Cai Z, Zhang T, Wan X-F. 2010. A computational framework for influenza 
antigenic cartography. PLoS Comput Biol 6:e1000949. 

248. Sturm-Ramirez KM, Hulse-Post DJ, Govorkova EA, Humberd J, Seiler P, 
Puthavathana P, Buranathai C, Nguyen TD, Chaisingh A, Long HT, 
Naipospos TS, Chen H, Ellis TM, Guan Y, Peiris JS, Webster RG. 2005. Are 
ducks contributing to the endemicity of highly pathogenic H5N1 influenza virus 
in Asia? J Virol 79:11269-11279. 

249. Munster VJ, Wallensten A, Baas C, Rimmelzwaan GF, Schutten M, Olsen B, 
Osterhaus A, Fouchier R. 2005. Mallards and highly pathogenic avian influenza 
ancestral viruses, northern Europe. Emerg Infect Dis 11:1545-1551. 

250. Barber MR, Aldridge JR, Webster RG, Magor KE. 2010. Association of RIG-
I with innate immunity of ducks to influenza. Proceedings of the National 
Academy of Sciences 107:5913-5918. 

251. Kawai T, Akira S. 2010. The role of pattern-recognition receptors in innate 
immunity: update on Toll-like receptors. Nature immunology 11:373-384. 

252. Lee N, Wong C, Hui D, Chan P. 2014. Role of toll-like receptors in naturally 
occurring influenza virus infection. Hong Kong Med J 20. 

253. Chen S, Cheng A, Wang M. 2013. Innate sensing of viruses by pattern 
recognition receptors in birds. Vet. Res 44:82. 



www.manaraa.com

 

171 

254. Smith G, Fan X, Wang J, Li K, Qin K, Zhang J, Vijaykrishna D, Cheung C, 
Huang K, Rayner J. 2006. Emergence and predominance of an H5N1 influenza 
variant in China. Proceedings of the National Academy of Sciences 103:16936-
16941. 

255. Garcia M, Suarez D, Crawford J, Latimer J, Slemons R, Swayne D, Perdue 
M. 1997. Evolution of H5 subtype avian influenza A viruses in North America. 
Virus research 51:115-124. 

256. Gambaryan AS, Matrosovich TY, Philipp J, Munster VJ, Fouchier RA, 
Cattoli G, Capua I, Krauss SL, Webster RG, Banks J. 2012. Receptor-binding 
profiles of H7 subtype influenza viruses in different host species. Journal of 
virology 86:4370-4379. 

257. Gambaryan A, Robertson J, Matrosovich M. 1999. Effects of egg-adaptation 
on the receptor-binding properties of human influenza A and B viruses. Virology 
258:232-239. 

258. Ye J, Xu Y, Harris J, Sun H, Bowman AS, Cunningham F, Cardona C, Yoon 
KJ, Slemons RD, Wan X-F. 2013. Mutation from arginine to lysine at the 
position 189 of hemagglutinin contributes to the antigenic drift in H3N2 swine 
influenza viruses. Virology 446:225-229. 

259. Woodward A, Rash AS, Medcalf E, Bryant NA, Elton DM. 2015. Using 
epidemics to map H3 equine influenza virus determinants of antigenicity. 
Virology 481:187-198. 

260. Chen Z, Wang W, Zhou H, Suguitan AL, Shambaugh C, Kim L, Zhao J, 
Kemble G, Jin H. 2010. Generation of live attenuated novel influenza virus 
A/California/7/09 (H1N1) vaccines with high yield in embryonated chicken eggs. 
Journal of virology 84:44-51. 

261. Nolting JM. 2008. Phenotypic and Genotypic Variations in Low Pathogenic 
H1N1 Waterfowl-Origin Avian Influenza Viruses. The Ohio State University. 

262. Gambaryan A, Webster R, Matrosovich M. 2002. Differences between 
influenza virus receptors on target cells of duck and chicken. Archives of virology 
147:1197-1208. 

263. Kuchipudi SV, Nelli R, White GA, Bain M, Chang KC, Dunham S. 2009. 
Differences in influenza virus receptors in chickens and ducks: implications for 
interspecies transmission. Journal of molecular and genetic medicine: an 
international journal of biomedical research 3:143. 

264. Lebarbenchon C, Stallknecht DE. 2011. Host shifts and molecular evolution of 
H7 avian influenza virus hemagglutinin. Virol J 8:328. 



www.manaraa.com

 

172 

265. Banks J, Speidel E, McCauley J, Alexander D. 2000. Phylogenetic analysis of 
H7 haemagglutinin subtype influenza A viruses. Archives of virology 145:1047-
1058. 

266. Lee D-H, Torchetti MK, Winker K, Ip HS, Song C-S, Swayne DE. 2015. 
Intercontinental Spread of Asian-Origin H5N8 to North America through 
Beringia by Migratory Birds. Journal of virology 89:6521-6524. 



www.manaraa.com

 

173 

 

SUPPLEMENTARY MATERIALS 



www.manaraa.com

 
 

174 

All supplemental materials are shown in the following PDF files. Reading these 

files requires Adobe Reader, v6.10.  

 Phylogenetic_trees_of_internal_genes_recovered_from_the_samples_collected_at
_the_LPM.pdf 

 Phylogenetic_trees_of_IAVs_isolated_from_wild_and_domestic_birds_in_the_A
mericas.pdf 

 Time_scale_phylogenetic_trees_for_eight_gene_segments.pdf 

 Phylogenetic_trees_for_eight_gene_segments.pdf 

 Phylogenetic_tree_for_HA1_nucleotide_sequences_of_H7_AIVs.pdf 

 Amino_acid_variations_in_antibody_binding_sites_of_H7_AIVs.pdf 

 

 


	Antigenic and Genetic Evolution of Emerging Avian Origin Influenza A Viruses
	Recommended Citation

	tmp.1633462931.pdf.dnz0G

